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Introduction

A central goal in this work is to connect the following domains:
Higher-dimensional

(algebraic)
rewriting

Directed
(algebraic)
topology

These are both approaches to directed calculations/processes.
In each, we have notions of homotopy:

Squier & coherence Natural homotopy

We would like to relate these two invariants.

More generally, these approaches complement each other:

Generators
Finiteness conditions

Directed CW complexes
Cellular homotopy

Algebraic description of
directed homotopy

Topological Squier’s theorem

Natural homotopy
Topology and continuity

Hadzihasanovic’s constructible directed complexes provide a
combinatorial presentation of higher categories.
Additionally, they are realisable as regular CW complexes.

.
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1 Constructible directed complexes and polygraphs

2 CW complexes and directed topological cells

3 Realisation (work in progress. . . )
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Constructible directed complexes and polygraphs
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Oriented thin posets

N.B. All results and definitions in this section are from recent works by
Amar Hadzihasanovic.
What are the properties required of a “face poset” for higher categorical
cells?

Recall that the Hasse diagram HP of P is the directed graph with

HP0 = P HP1 = {(y, x) |y covers x}.

A notion of dimension : graded.
to each x 2 P we associate dim(x) 2 N,

A notion of source and target : oriented.
to each edge in the Hasse diagram of P , we associate either + or �,

A manifold-like condition : thinness.
We ask that elements intersect nicely, both geometrically and w.r.t.

orientation

y
↵2

&&
↵1

xx
z1

�1 &&

z2

�2xx
x

with ↵1�1 = �↵2�2.

P is then an oriented thin poset, and we define input/output
borders, dimension/purity of closed subsets. . .
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Examples
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Constructible directed complexes

Let P be an oriented thin poset. For each n 2 N, we single out a a
poset (CMolnP,@) of n-dimensional closed pure subsets of P . These
are called constructible n-molecules.

Constructible n-molecules are globular in the sense that

@↵(@+U) = @↵(@�U) and @+U \ @�U = @(@↵U).

for ↵ 2 {+,�}.
A n-molecule with a greatest element is called an atom.
An oriented thin poset P is called a constructible directed complex
if cl (x) is a constructible atom for all x 2 P .
The full subcategory of ogPosin consisting of constructible
directed complexes is denoted by CDCpx.

Proposition
A constructible directed complex is the colimit of the diagram of
inclusions of its atoms.

.
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Constructible polygraphs

Let CAtom be a skeleton of the full subcategory of CDCpx

consisting of constructible atoms.

A constructible polygraph is a presheaf

X : CAtom
op

�! Set.

An element x 2 X(U), for dim(U) = n is a n-cell of shape U .

.
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Let CAtom be a skeleton of the full subcategory of CDCpx

consisting of constructible atoms.
A constructible polygraph is a presheaf

X : CAtom
op

�! Set.

An element x 2 X(U), for dim(U) = n is a n-cell of shape U .
This is similar to simplicial complexes, but with more complex
(globular) base shapes.

.
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Constructible polygraphs

A constructible polygraph is a presheaf

X : CAtom
op

�! Set.

An element x 2 X(U), for dim(U) = n is a n-cell of shape U .
Constructible polygraphs and morphisms of presheaves form a
category CPol.

.
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Constructible polygraphs

A constructible polygraph is a presheaf

X : CAtom
op

�! Set.

An element x 2 X(U), for dim(U) = n is a n-cell of shape U .
Via Steiner’s theory of directed complexes, Hadzihasanovic shows
that there exists a functor

CDCpx �! !Cat

The restriction of this functor to CAtom is denoted by (�)!.
The left Kan extension of the Yoneda embedding
CAtom ! CPol yields a functor

CPol�! !Cat

X 7�! X! :=

Z U2CAtom

U! ⇥X(U)

.
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An element x 2 X(U), for dim(U) = n is a n-cell of shape U .
The left Kan extension of the Yoneda embedding
CAtom ! CPol yields a functor

CPol�! !Cat

X 7�! X! :=

Z U2CAtom

U! ⇥X(U)

Recently, a theorem was in fact found to be a conjecture:

Conjecture
For a constructible polygraph X, the omega category X! admits the
structure of a polygraph whose n-dimensional generators are indexed by
n-cells of X.

.
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Constructible polygraphs

A constructible polygraph is a presheaf

X : CAtom
op

�! Set.

An element x 2 X(U), for dim(U) = n is a n-cell of shape U .
The left Kan extension of the Yoneda embedding
CAtom ! CPol yields a functor

CPol�! cgHaus

X 7�! |X| :=

Z U2CAtom

|U |⇥X(U)

This yields spaces with the structure of CW complex:

Theorem
For a constructible polygraph X, the space |� | admits the structure of
a CW complex whose generating n-cells are indexed by n-cells of X.

.
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CW complexes and directed topological cells
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CW complexes

Morally, a CW complex X is a space built from topological cells
homeomorphic to n-balls Dn.

Start with a discrete set of points to form the 0-skeleton X0
.

Having constructed the (n� 1)-skeleton Xn�1
, place the borders of

n-balls via attaching maps

�x : Sn�1
�! Xn�1.

Form the n-skeleton

Xn = Xn�1
a

x

enx/{�x}x

where the quotient indicates the identification of the images of the

attaching maps �x.

.
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Globular CW complexes

A notion of directed CW complex was introduced by P. Gaucher
and E. Goubault. The directed topological cells they used are built
using the following construction.
Consider the globe functor:

Glob : Top�! PoTop

X 7�! (X ⇥ I/ ⇠,)

where (x, t) ⇠ (x0, t0) iff t = t0 2 {0, 1} and
(x, 0)  (x0, t0) for all (x, x0, t) 2 X ⇥X ⇥ I,
(x, t)  (x0, 1) for all (x, x0, t) 2 X ⇥X ⇥ I,
(x, t)  (x0, t0) if and only if x = x0

and t, t0 2]0, 1[ s.t. t  t0.

We may then define globular cells by setting
~Dn+1 := Glob(Dn).

These are not flexible enough to accommodate glueing along
partial borders:

.
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The directed globe functor

Consider the directed globe functor:
!
Gl : PoTop�! PoTop

(X,X) 7�! (X ⇥ I/ ⇠,)

where (x, t) ⇠ (x0, t0) iff t = t0 2 {0, 1} and
(x, 0)  (x0, t0) for all (x, x0, t) 2 X ⇥X ⇥ I,
(x, t)  (x0, 1) for all (x, x0, t) 2 X ⇥X ⇥ I,
(x, t)  (x0, t0) if and only if t, t0 2]0, 1[ and

t < t0, or
t = t0 and x X x0.

We then define directed globes inductively using
!
Gl:

)
D0 := {⇤} and for n � 1,

)
Dn :=

!
Gl(

)
Dn�1).

These are thus quotients of the n-cube:

In =
)
D1

⇥ In�1
!

)
D2

⇥In�2
! · · ·

· · · !
)
Dk

⇥ In�k
!· · · !

)
Dn�1

⇥ I !
)
Dn.

In this view, points in )
Dn are represented by n-tuples (tn, . . . , t1),

the quotient being given by

(tn, . . . , t1) ⇠ (t0n, . . . , t
0
1) () 9i, ti = t0i = b for b 2 {0, 1},

and 8j < i, tj = t0j .

.
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Directed globes

We obtain a nice definition for borders; for any k  n� 1 set

@�
k (

)
Dn) := {(tn, . . . , tk+2, 0, tk, . . . , t1)|ti 2 I}

@+
k (

)
Dn) := {(tn, . . . , tk+2, 1, tk, . . . , t1)|ti 2 I}.

We have @↵
k (

)
Dn) ⇠=

)
Dk.

These cells are 1-dimensionally oriented in each dimension; the
variable tk corresponds to “cells of dimension k”.

.
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Structural maps

We now need appropriate structural maps for directed globes.

We generate maps )
Dk

!
)
Dn with subglobes and total borders:

i↵ :
)
Dn�1 ⇠= @↵)Dn

�!
)
Dn

(tn�1, . . . t1) 7�! (b, tn�1, . . . , t1),

Cameron Calk (LIX) Abstract Rewriting 5/02/2021 15 / 24



Structural maps

We now need appropriate structural maps for directed globes.
For i :

)
D1

!
)
D1, we take

subintervals (non-degenerate).

constant maps (degenerate).

We generate maps )
Dk

!
)
Dn with subglobes and total borders:

i↵ :
)
Dn�1 ⇠= @↵)Dn

�!
)
Dn

(tn�1, . . . t1) 7�! (b, tn�1, . . . , t1),

Cameron Calk (LIX) Abstract Rewriting 5/02/2021 15 / 24

⇒.

D
•-ce

.c-a

⇒
,

Ü D



Structural maps

We now need appropriate structural maps for directed globes.
For i :

)
D1

!
)
D1, we take

subintervals (non-degenerate).

constant maps (degenerate).

Suppose that maps [
)
Dn�1,

)
Dn�1] have been constructed.

A map i :
)
Dn

!
)
Dn is given by:

a monotonic map ◆ : I ! I,
a continuous family of maps

j(�) : I �! [
)
Dn�1,

)
Dn�1]

such that j0 and j1 are constant maps and jt is non degenerate for

t 2]0, 1[.

Then i is the quotient map of
)
Dn�1

⇥ I�!
)
Dn

(x, t) 7�! (jt(x), ◆(t)).
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Realisation (work in progress. . . )
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Directed geometric realisation
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When defiuiug a géométrie réalisation of preuves on a category S , we can
réalise each shape se So

D - Top
ms we und a topologieal interprétation of

y _ standard face maps
n - simplex

:*
.

In the case of constructible complexes , the face maps are more wmplicated ;

they are
"

partial
"
:

We und to already have an interprétation

Ç}~,| of ln- t) - dimensionnel CDCpx
'
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Directed geometric realisation
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(Dp :P - Caton)
x - dlx) .

We initialise the construction :

U Vs À =L.)
. P - ppt :-. colin ( Ro Dp)
/ p

a 0 -mol .
a 0 -dimension -

(Dcpx

If we know hour to réalise en- D - atours ( and thueby ln - t) - diuél CD Cpx's ) ,
we entend :

R d" Non , if P is an u-dimension ctxpn , againU - D

maton
Ipl :< alpin (Ro Dp) .
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V
I U I lqp.ie/yy ) we und to show that IN : Ü
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Thank You
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Coming soon:

Algebraic Rewriting Seminar

Organisers:
Benjamin Dupont (bdupont@math.univ-lyon1.fr)

Cyrille Chenavier (cyrille.chenavier@unilim.fr)

Cameron Calk (cameron.calk@lix.polytechnique.fr)

Modalities:
Thursdays 16h - 18h (bi)weekly.

Seminar held virtually.

Expected to start in March

Feel free to contact us with any questions or comments.

See you soon!
Cameron Calk (LIX) Abstract Rewriting 5/02/2021 20 / 24



Graded posets

N.B. All results and definitions in this section are from recent works by
Amar Hadzihasanovic. Let P be a poset.

Let x, y 2 P . We say that y covers x if

x < y and 8y0 2 P, x < y0  y ) y0 = y.

The Hasse diagram HP of P is the directed graph with

HP0 = P HP1 = {(y, x) |y covers x}.

Denote by P? the poset P with a least element ? added.
P is graded if for every x, all paths from x to ? have the same
length lx. We set

dim(x) := lx � 1

and P (n) := {x 2 P |dim(x) = n}.
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Orientation, closures and borders

Let P be a graded poset.
An orientation of P is a map

o : HP1 �! {�,+}.

In this case we say that P is an oriented graded poset.
Recall that for U ✓ P , the closure of U is defined as

cl (U) = {x 2 P |9z 2 U, x  z},

and U is closed if U = cl (U).
We set dimU = max{dim(x)|x 2 U} and dim(;) = �1.
A closed n-dimensional subset U is pure if U = cl (U (n)).

An inclusion of oriented thin posets is a closed embedding of
posets that is compatible with the orientation maps. We denote
the category of oriented graded posets and inclusions by ogPosin

.
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cl (U) = {x 2 P |9z 2 U, x  z},

and U is closed if U = cl (U).
We set dimU = max{dim(x)|x 2 U} and dim(;) = �1.
Closed subsets inherit gradedness and orientation from P . For a
closed n-dimensional subset U , we set

�↵U := { x 2 U (n�1)
| 8y 2 U, if y covers x, then o(y, x) = ↵}

@↵U := cl (�↵U) [ { x 2 U | 8y 2 U, x  y ) dim(y) < n},

�U := �+U [��U, @U := @+U [ @�U.

@�
n U (resp. @+

n U) is the input (resp. output) boundary of U .

An inclusion of oriented thin posets is a closed embedding of
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Oriented thin posets

Let P be an oriented graded poset.
A consequence of gradedness is that for x  y, all paths from x to
y in HP have the same length dim(y)� dim(x). This is the length
of the interval [x, y].

If P is oriented, we extend o to P? by setting o(x,?) = + for all
minimal x 2 P .
P is an oriented thin poset if for any interval [x, y] of length 2 we
have thinness:

y
↵2

%%
↵1

yy
z1

�1 &&

z2

�2xx
x

and additionally ↵1�1 = �↵2�2.
Examples:

.
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Constructible directed complexes

Let P be an oriented thin poset. For each n 2 N, we single out a a
poset (CMolnP,@) of n-dimensional closed subsets of P . These are
called constructible n-molecules.

CMol0P := {{x }| dim(x) = 0} with the discrete order.

Constructible n-molecules are globular in the sense that

@↵(@+U) = @↵(@�U) and @+U \ @�U = @(@↵U).

An oriented thin poset P is called a constructible directed complex
if cl (x) is a constructible atom for all x 2 P .
The full subcategory of ogPosin consisting of constructible
directed complexes is denoted by CDCpx.

.
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poset (CMolnP,@) of n-dimensional closed subsets of P . These are
called constructible n-molecules.

CMol0P := {{x }| dim(x) = 0} with the discrete order.
For a pure n-dimensional subset U , we have U 2 CMolnP if
@+U, @�U 2 CMoln�1P and either

U has a greatest element, or

U = U1 [ U2 such that

U1, U2 partition the maximal elements of U ,
U1 \ U2 = @+U1 \ @�U2 2 CMoln�1P , and
@�U1 v @�U , @+U2 v @+U , U1 \ U2 v @+U , and U1 \ U2 v @�U .
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