Geometric realisation of regular constructible polygraphs

Journées LHC:

Logique, homotopie, & catégories

Cameron Calk Laboratoire d'Informatique de l'École Polytechnique (LIX)

Cameron Calk (LIX)

Abstract Rewriting

Introduction

- A central goal in this work is to connect the following domains: Higher-dimensional (algebraic) rewriting
 topology
- These are both approaches to directed calculations/processes.
- In each, we have notions of homotopy:

Squier & coherence

Natural homotopy

We would like to relate these two invariants.

Introduction

- A central goal in this work is to connect the following domains: Higher-dimensional (algebraic) rewriting topology
- These are both approaches to directed calculations/processes.
- More generally, these approaches complement each other:

Generators Finiteness conditions Directed CW complexes Cellular homotopy

Algebraic description of directed homotopy Topological Squier's theorem

Natural homotopy Topology and continuity

Introduction

- A central goal in this work is to connect the following domains: Higher-dimensional (algebraic) rewriting
 topology
- These are both approaches to directed calculations/processes.
- More generally, these approaches complement each other:

Generators Finiteness conditions Directed CW complexes Cellular homotopy

Algebraic description of directed homotopy Topological Squier's theorem

Natural homotopy Topology and continuity

- Hadzihasanovic's constructible directed complexes provide a combinatorial presentation of higher categories.
- Additionally, they are realisable as regular CW complexes.

2 CW complexes and directed topological cells

Constructible directed complexes and polygraphs

N.B. All results and definitions in this section are from recent works by Amar Hadzihasanovic.

What are the properties required of a "face poset" for higher categorical cells?

• Recall that the Hasse diagram $\mathcal{H}P$ of P is the directed graph with

 $\mathcal{H}P_0 = P$ $\mathcal{H}P_1 = \{(y, x) | y \text{ covers } x\}.$

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
 - to each $x \in P$ we associate $\dim(x) \in \mathbb{N}$,

L.

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
 - to each $x \in P$ we associate $\dim(x) \in \mathbb{N}$,
- A notion of source and target : oriented.
 - to each edge in the Hasse diagram of P, we associate either + or -,

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
 - to each $x \in P$ we associate $\dim(x) \in \mathbb{N}$,
- A notion of source and target : oriented.
 - to each edge in the Hasse diagram of P, we associate either + or -,
- A manifold-like condition : thinness.
 - We ask that elements intersect nicely, both geometrically and w.r.t. orientation

with $\alpha_1\beta_1 = -\alpha_2\beta_2$.

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
 - to each $x \in P$ we associate $\dim(x) \in \mathbb{N}$,
- A notion of source and target : oriented.
 - to each edge in the Hasse diagram of P, we associate either + or -,
- A manifold-like condition : thinness.
 - We ask that elements intersect nicely, both geometrically and w.r.t. orientation

with $\alpha_1\beta_1 = -\alpha_2\beta_2$.

9- 9+

• *P* is then an oriented thin poset, and we define input/output borders, dimension/purity of closed subsets...

Cameron Calk (LIX)

Abstract Rewriting

Examples

χ, x. M a lecule 1 * the 2-globe 2 4 δ 6 1+ a whishered А 2- globe. ٣ u Г ω A z z W χ y Z Abstract Rewriting Cameron Calk (LIX)

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \sqsubset)$ of *n*-dimensional closed pure subsets of P. These are called constructible *n*-molecules.

-> O-molecules are O-dimensional elements.

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \sqsubset)$ of *n*-dimensional closed pure subsets of P. These are called constructible *n*-molecules.

• Constructible *n*-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^{+}U) = \partial^{\alpha}(\partial^{-}U) \quad \text{and} \quad \partial^{+}U \cap \partial^{-}U = \partial(\partial^{\alpha}U).$ for $\alpha \in \{+, -\}.$

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \sqsubset)$ of *n*-dimensional closed pure subsets of P. These are called constructible *n*-molecules.

• Constructible *n*-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^{+}U) = \partial^{\alpha}(\partial^{-}U) \quad \text{and} \quad \partial^{+}U \cap \partial^{-}U = \partial(\partial^{\alpha}U).$ for $\alpha \in \{+, -\}.$

• A *n*-molecule with a greatest element is called an atom.

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \sqsubset)$ of *n*-dimensional closed pure subsets of P. These are called constructible *n*-molecules.

• Constructible *n*-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^{+}U) = \partial^{\alpha}(\partial^{-}U) \text{ and } \partial^{+}U \cap \partial^{-}U = \partial(\partial^{\alpha}U).$ for $\alpha \in \{+, -\}.$

- A *n*-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if cl(x) is a constructible atom for all $x \in P$.

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \sqsubset)$ of *n*-dimensional closed pure subsets of P. These are called constructible *n*-molecules.

• Constructible *n*-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^{+}U) = \partial^{\alpha}(\partial^{-}U) \text{ and } \partial^{+}U \cap \partial^{-}U = \partial(\partial^{\alpha}U).$ for $\alpha \in \{+, -\}.$

- A *n*-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if cl(x) is a constructible atom for all $x \in P$.
- Let \mathbf{ogPos}_{in} denote the category of oriented graded posets and closed inclusions.

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \sqsubset)$ of *n*-dimensional closed pure subsets of P. These are called constructible *n*-molecules.

• Constructible *n*-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^{+}U) = \partial^{\alpha}(\partial^{-}U) \text{ and } \partial^{+}U \cap \partial^{-}U = \partial(\partial^{\alpha}U).$ for $\alpha \in \{+, -\}.$

- A *n*-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if cl(x) is a constructible atom for all $x \in P$.
- The full subcategory of **ogPos**_{in} consisting of constructible directed complexes is denoted by **CDCpx**.

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \sqsubset)$ of *n*-dimensional closed pure subsets of P. These are called constructible *n*-molecules.

• Constructible *n*-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^{+}U) = \partial^{\alpha}(\partial^{-}U) \text{ and } \partial^{+}U \cap \partial^{-}U = \partial(\partial^{\alpha}U).$ for $\alpha \in \{+, -\}.$

- A *n*-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if cl(x) is a constructible atom for all $x \in P$.
- The full subcategory of **ogPos**_{in} consisting of constructible directed complexes is denoted by **CDCpx**.

Proposition

A constructible directed complex is the colimit of the diagram of inclusions of its atoms.

Examples

• Let **CAtom** be a skeleton of the full subcategory of **CDCpx** consisting of constructible atoms.

- Let **CAtom** be a skeleton of the full subcategory of **CDCpx** consisting of constructible atoms.
- A constructible polygraph is a presheaf

 $X : \mathbf{CAtom}^{op} \longrightarrow \mathsf{Set.}$

An element $x \in X(U)$, for dim(U) = n is a *n*-cell of shape U.

• This is similar to simplicial complexes, but with more complex (globular) base shapes.

• A constructible polygraph is a presheaf

 $X: \mathbf{CAtom}^{op} \longrightarrow \mathsf{Set.}$

An element $x \in X(U)$, for dim(U) = n is a *n*-cell of shape U.

• Constructible polygraphs and morphisms of presheaves form a category **CPol**.

• A constructible polygraph is a presheaf

 $X: \mathbf{CAtom}^{op} \longrightarrow \mathsf{Set}.$

An element $x \in X(U)$, for dim(U) = n is a *n*-cell of shape U.

• Via Steiner's theory of directed complexes, Hadzihasanovic shows that there exists a functor

$\mathbf{CDCpx} \longrightarrow \omega \mathbf{Cat}$

- The restriction of this functor to **CAtom** is denoted by $(-)_{\omega}$.
- The left Kan extension of the Yoneda embedding
 CAtom → CPol yields a functor

$$\begin{aligned} \mathbf{CPol} &\longrightarrow \omega \mathbf{Cat} \\ & X \longmapsto X_{\omega} := \int^{U \in \mathbf{CAtom}} U_{\omega} \times X(U) \end{aligned}$$

• A constructible polygraph is a presheaf

 $X: \mathbf{CAtom}^{op} \longrightarrow \mathsf{Set}.$

An element $x \in X(U)$, for dim(U) = n is a *n*-cell of shape U.

The left Kan extension of the Yoneda embedding
 CAtom → CPol yields a functor

 $\begin{array}{l} \mathbf{CPol} \longrightarrow \omega \mathbf{Cat} \\ X \longmapsto X_{\omega} := \int^{U \in \mathbf{CAtom}} U_{\omega} \times X(U) \end{array}$

• Recently, a theorem was in fact found to be a conjecture:

Conjecture

For a constructible polygraph X, the omega category X_{ω} admits the structure of a polygraph whose n-dimensional generators are indexed by n-cells of X.

• A constructible polygraph is a presheaf

 $X: \mathbf{CAtom}^{op} \longrightarrow \mathsf{Set}.$

An element $x \in X(U)$, for dim(U) = n is a *n*-cell of shape U.

• Hadzihasanovic further shows that there exists a functor

$\operatorname{CDCpx} \longrightarrow \operatorname{cgHaus}$

- The restriction of this functor to **CAtom** is denoted by |-|.
- The left Kan extension of the Yoneda embedding
 CAtom → CPol yields a functor

 $\begin{array}{l} \mathbf{CPol} \longrightarrow \mathbf{cgHaus} \\ X \longmapsto |X| := \int^{U \in \mathbf{CAtom}} |U| \times X(U) \end{array}$

• A constructible polygraph is a presheaf

C

 $X: \mathbf{CAtom}^{op} \longrightarrow \mathsf{Set}.$

An element $x \in X(U)$, for dim(U) = n is a *n*-cell of shape U.

The left Kan extension of the Yoneda embedding
 CAtom → CPol yields a functor

$$\begin{array}{l} \mathbf{Pol} \longrightarrow \mathbf{cgHaus} \\ X \longmapsto |X| := \int^{U \in \mathbf{CAtom}} |U| \times X(U) \end{array}$$

• This yields spaces with the structure of CW complex:

Theorem

For a constructible polygraph X, the space |-| admits the structure of a CW complex whose generating n-cells are indexed by n-cells of X.

CW complexes and directed topological cells

CW complexes

- Morally, a CW complex X is a space built from topological cells homeomorphic to n-balls D^n .
 - Start with a discrete set of points to form the 0-skeleton X^0 .
 - Having constructed the (n-1)-skeleton X^{n-1} , place the borders of *n*-balls via attaching maps

$$\phi_x: S^{n-1} \longrightarrow X^{n-1}.$$

• Form the *n*-skeleton

$$X^n = X^{n-1} \prod_x e_x^n / \{\phi_x\}_x$$

where the quotient indicates the identification of the images of the attaching maps ϕ_x .

Globular CW complexes

- A notion of directed CW complex was introduced by P. Gaucher and E. Goubault. The directed topological cells they used are built using the following construction.
- Consider the globe functor:

$$Glob: \mathsf{Top} \longrightarrow \mathsf{PoTop}$$

 $X \longmapsto (X \times I/\sim, \leq)$

where $(x, t) \sim (x', t')$ iff $t = t' \in \{0, 1\}$ and

- $\bullet \ (x,0) \leq (x',t') \text{ for all } (x,x',t) \in X \times X \times I,$
- $(x,t) \leq (x',1)$ for all $(x,x',t) \in X \times X \times I$,
- $(x,t) \leq (x',t')$ if and only if x = x' and $t,t' \in]0,1[$ s.t. $t \leq t'$.

Cameron Calk (LIX)

Globular CW complexes

- A notion of directed CW complex was introduced by P. Gaucher and E. Goubault. The directed topological cells they used are built using the following construction.
- Consider the globe functor:

 $\begin{array}{c} Glob: \mathsf{Top} \longrightarrow \mathsf{PoTop} \\ X \longmapsto (X \times I/\sim, \leq) \end{array}$

• We may then define globular cells by setting $\vec{D}^{n+1} := Glob(D^n).$

Globular CW complexes

- A notion of directed CW complex was introduced by P. Gaucher and E. Goubault. The directed topological cells they used are built using the following construction.
- Consider the globe functor:

 $\begin{array}{c} Glob: \mathsf{Top} \longrightarrow \mathsf{PoTop} \\ X \longmapsto (X \times I/\sim, \leq) \end{array}$

• We may then define globular cells by setting

 $\vec{D}^{n+1} := Glob(D^n).$

• These are not flexible enough to accommodate glueing along partial borders:

we don't obtain a space which in dihomeomorphic to D²...

• Consider the directed globe functor: $\overrightarrow{Gl} : \text{PoTop} \longrightarrow \text{PoTop} \\ (X, \leq_X) \longmapsto (X \times I/ \sim, \leq)$ where $(x, t) \sim (x', t')$ iff $t = t' \in \{0, 1\}$ and • $(x, 0) \leq (x', t')$ for all $(x, x', t) \in X \times X \times I$, • $(x, t) \leq (x', 1)$ for all $(x, x', t) \in X \times X \times I$, • $(x, t) \leq (x', t')$ if and only if $t, t' \in]0, 1[$ and • t < t', or • t = t' and $x \leq_X x'$.

• Consider the directed globe functor: \overrightarrow{Gl} : PoTop \longrightarrow PoTop $(X, \leq_X) \longmapsto (X \times I/\sim, \leq)$

• We then define directed globes inductively using \dot{Gl} :

 $\overrightarrow{D}^0 := \{*\}$ and for $n \ge 1$, $\overrightarrow{D}^n := \overrightarrow{Gl}(\overrightarrow{D}^{n-1})$.

- Consider the directed globe functor: \overrightarrow{Gl} : PoTop \longrightarrow PoTop $(X, \leq_X) \longmapsto (X \times I/\sim, \leq)$
- We then define directed globes inductively using \dot{Gl} :

$$\overrightarrow{D}^0 := \{*\}$$
 and for $n \ge 1$, $\overrightarrow{D}^n := \overrightarrow{Gl}(\overrightarrow{D}^{n-1})$.

• These are thus quotients of the *n*-cube:

$$I^{n} = \overrightarrow{\overline{D}}^{1} \times I^{n-1} \to \overrightarrow{\overline{D}}^{2} \times I^{n-2} \to \cdots$$
$$\cdots \to \overrightarrow{\overline{D}}^{k} \times I^{n-k} \to \cdots \to \overrightarrow{\overline{D}}^{n-1} \times I \to \overrightarrow{\overline{D}}^{n}.$$

جمس

- Consider the directed globe functor: \overrightarrow{Gl} : PoTop \longrightarrow PoTop $(X, \leq_X) \longmapsto (X \times I/\sim, \leq)$
- We then define directed globes inductively using \vec{Gl} :

$$\overrightarrow{D}^0 := \{*\}$$
 and for $n \ge 1$, $\overrightarrow{D}^n := \overrightarrow{Gl}(\overrightarrow{D}^{n-1})$.

• These are thus quotients of the *n*-cube:

$$I^{n} = \overrightarrow{D}^{1} \times I^{n-1} \to \overrightarrow{D}^{2} \times I^{n-2} \to \cdots$$
$$\cdots \to \overrightarrow{D}^{k} \times I^{n-k} \to \cdots \to \overrightarrow{D}^{n-1} \times I \to \overrightarrow{D}^{n}.$$

• In this view, points in $\overline{\vec{D}}^n$ are represented by *n*-tuples (t_n, \ldots, t_1) , the quotient being given by

$$(t_n, \dots, t_1) \sim (t'_n, \dots, t'_1) \quad \Longleftrightarrow \quad \exists i, t_i = t'_i = b \text{ for } b \in \{0, 1\},$$

and $\forall j < i, t_j = t'_j.$

Directed globes

• We obtain a nice definition for borders; for any $k \leq n-1$ set

$$\partial_k^-(\overrightarrow{D}^n) := \{ \overline{(t_n, \dots, t_{k+2}, 0, t_k, \dots, t_1)} | t_i \in I \}$$
$$\partial_k^+(\overrightarrow{D}^n) := \{ \overline{(t_n, \dots, t_{k+2}, 1, t_k, \dots, t_1)} | t_i \in I \}.$$

We have $\partial_k^{\alpha}(\overrightarrow{D}^n) \cong \overrightarrow{D}^k$.

• These cells are 1-dimensionally oriented in each dimension; the variable t_k corresponds to "cells of dimension k".

• We now need appropriate structural maps for directed globes.

- We now need appropriate structural maps for directed globes.
 For *i* : D
 ¹ → D
 ¹, we take D
 ¹
 - subintervals (non-degenerate).
 - constant maps (degenerate).

- We now need appropriate structural maps for directed globes. • For $i: \overrightarrow{D}^1 \to \overrightarrow{D}^1$, we take
 - subintervals (non-degenerate).
 - constant maps (degenerate).
- Suppose that maps $[\overrightarrow{D}^{n-1}, \overrightarrow{D}^{n-1}]$ have been constructed.
 - A map $i: \overrightarrow{D}^n \to \overrightarrow{D}^n$ is given by:
 - a monotonic map $\iota: I \to I$,
 - a continuous family of maps

$$j_{(-)}:I\longrightarrow [\overrightarrow{D}^{n-1},\overrightarrow{D}^{n-1}]$$

such that j_0 and j_1 are constant maps and j_t is non degenerate for $t \in]0, 1[$.

Then i is the quotient map of

$$\vec{\mathcal{D}}^{n-1} \times I \longrightarrow \overrightarrow{\vec{D}}^n$$
$$(x,t) \longmapsto (j_t(x),\iota(t)).$$

These maps are called subglobes.

Cameron Calk (LIX)

Abstract Rewriting

• We generate maps $\overrightarrow{D}^k \to \overrightarrow{D}^n$ with subglobes and total borders:

$$i_{\alpha}: \overrightarrow{D}^{n-1} \cong \partial^{\alpha} \overrightarrow{D}^{n} \longrightarrow \overrightarrow{D}^{n} (t_{n-1}, \dots, t_{1}) \longmapsto (b, t_{n-1}, \dots, t_{1}),$$

15/24

Realisation (work in progress...)

٠

Directed geometric realisation

When defining a geometric realisation of probeaves on a category S, we can realise each shape s c S.

In the case of constructible complexes, the face maps are more complicated; they are "partial":

We need to aheady have an interpretation
of
$$(n-1)$$
-dimensional CDCpx's in order to
understand how $(n-1)$ -dimensional abons
are included in n-dimensional ones.

Cameron Calk (LIX)

Abstract Rewriting

Directed geometric realisation

We initialise the construction: $U \xrightarrow{R} \overrightarrow{D}^{\circ} = \{x\} \qquad ; \qquad P \xrightarrow{P} (P) := colim (R \circ D_{P})$ $a \ 0-uol. \qquad \qquad col_{ex}$

If we know hows to realise (n-1)-atoms (and thereby (n-1)-dim'l CDCp2's), we estend:

$$U \xrightarrow{R} D^{n} \qquad Now, if P is an n-dimensional CDCpr, again
n-atom
$$V \xrightarrow{Q} U \qquad D^{n-1} \qquad P_{1}:= colim (R \circ D_{P}).$$

$$P_{1}:= colim (R \circ D_{P}).$$

$$P_{2}:= colim (R \circ D_{P}).$$

$$We need to show that $|W| \cong \overline{D}^{n}$

$$Whenever U is a constructible n-motion.$$

$$W = 1$$$$$$

Cameron Calk (LIX)

Thank You

Coming soon: Algebraic Rewriting Seminar

• Organisers:

- Benjamin Dupont (bdupont@math.univ-lyon1.fr)
- Cyrille Chenavier (cyrille.chenavier@unilim.fr)
- Cameron Calk (cameron.calk@lix.polytechnique.fr)
- Modalities:
 - Thursdays 16h 18h (bi)weekly.
 - Seminar held virtually.
 - Expected to start in March
- Feel free to contact us with any questions or comments.

See you soon!

Graded posets

N.B. All results and definitions in this section are from recent works by Amar Hadzihasanovic. Let P be a poset.

• Let $x, y \in P$. We say that y covers x if

$$x < y$$
 and $\forall y' \in P, x < y' \le y \Rightarrow y' = y.$

• The Hasse diagram $\mathcal{H}P$ of P is the directed graph with

$$\mathcal{H}P_0 = P$$
 $\mathcal{H}P_1 = \{(y, x) | y \text{ covers } x\}.$

- Denote by P_{\perp} the poset P with a least element \perp added.
- P is graded if for every x, all paths from x to \perp have the same length l_x . We set

$$\dim(x) := l_x - 1$$

and $P^{(n)} := \{x \in P | dim(x) = n\}.$

Orientation, closures and borders

Let P be a graded poset.

• An orientation of P is a map

$$o: \mathcal{H}P_1 \longrightarrow \{-,+\}.$$

In this case we say that P is an oriented graded poset.

• Recall that for $U \subseteq P$, the closure of U is defined as

$$cl(U) = \{ x \in P | \exists z \in U, x \le z \},\$$

and U is closed if U = cl(U).

- We set dim $U = \max{\dim(x) | x \in U}$ and dim $(\emptyset) = -1$.
- A closed *n*-dimensional subset U is pure if $U = cl(U^{(n)})$.

Orientation, closures and borders

Let P be a graded poset.

• An orientation of P is a map

$$o: \mathcal{H}P_1 \longrightarrow \{-,+\}.$$

In this case we say that P is an oriented graded poset.

• Recall that for $U \subseteq P$, the closure of U is defined as

$$cl(U) = \{ x \in P | \exists z \in U, x \le z \},\$$

and U is closed if U = cl(U).

- We set dim $U = \max{\dim(x) | x \in U}$ and dim $(\emptyset) = -1$.
- Closed subsets inherit gradedness and orientation from P. For a closed *n*-dimensional subset U, we set

$$\begin{split} \Delta^{\alpha}U &:= \{ x \in U^{(n-1)} \mid \forall y \in U, \text{ if } y \text{ covers } x, \text{ then } o(y,x) = \alpha \} \\ \partial^{\alpha}U &:= cl(\Delta^{\alpha}U) \cup \{ x \in U \mid \forall y \in U, x \leq y \Rightarrow dim(y) < n \}, \\ \Delta U &:= \Delta^{+}U \cup \Delta^{-}U, \qquad \partial U := \partial^{+}U \cup \partial^{-}U. \end{split}$$

• $\partial_n^- U$ (resp. $\partial_n^+ U$) is the input (resp. output) boundary of U.

Orientation, closures and borders

Let P be a graded poset.

• An orientation of P is a map

$$o: \mathcal{H}P_1 \longrightarrow \{-,+\}.$$

In this case we say that P is an oriented graded poset.

• Recall that for $U \subseteq P$, the closure of U is defined as

$$cl(U) = \{ x \in P | \exists z \in U, x \le z \},\$$

and U is closed if U = cl(U).

- We set dim $U = \max{\dim(x)|x \in U}$ and dim $(\emptyset) = -1$.
- An inclusion of oriented thin posets is a closed embedding of posets that is compatible with the orientation maps. We denote the category of oriented graded posets and inclusions by **ogPos**_{in}

Let P be an oriented graded poset.

• A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H}P$ have the same length $\dim(y) - \dim(x)$. This is the length of the interval [x, y].

Let P be an oriented graded poset.

- A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H}P$ have the same length $\dim(y) \dim(x)$. This is the length of the interval [x, y].
- P is thin if any interval [x, y] of length 2 in P_{\perp} contains exactly 4 elements:

Let P be an oriented graded poset.

- A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H}P$ have the same length $\dim(y) \dim(x)$. This is the length of the interval [x, y].
- If P is oriented, we extend o to P_⊥ by setting o(x, ⊥) = + for all minimal x ∈ P.
- P is an oriented thin poset if for any interval [x, y] of length 2 we have thinness:

and additionally $\alpha_1\beta_1 = -\alpha_2\beta_2$.

Let P be an oriented graded poset.

- A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H}P$ have the same length $\dim(y) \dim(x)$. This is the length of the interval [x, y].
- If P is oriented, we extend o to P_⊥ by setting o(x, ⊥) = + for all minimal x ∈ P.
- P is an oriented thin poset if for any interval [x, y] of length 2 we have thinness:

and additionally $\alpha_1\beta_1 = -\alpha_2\beta_2$.

• Examples:

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \Box)$ of *n*-dimensional closed subsets of P. These are called constructible *n*-molecules.

• $C\mathcal{M}ol_0P := \{\{x\} \mid \dim(x) = 0\}$ with the discrete order.

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \Box)$ of *n*-dimensional closed subsets of P. These are called constructible *n*-molecules.

- $C\mathcal{M}ol_0P := \{\{x\} | \dim(x) = 0\}$ with the discrete order.
- For a pure *n*-dimensional subset U, we have $U \in C\mathcal{M}ol_nP$ if $\partial^+ U, \partial^- U \in C\mathcal{M}ol_{n-1}P$ and either
 - $\bullet~U$ has a greatest element, or
 - $U = U_1 \cup U_2$ such that
 - U_1, U_2 partition the maximal elements of U,
 - $U_1 \cap U_2 = \partial^+ U_1 \cap \partial^- U_2 \in C\mathcal{M}ol_{n-1}P$, and
 - $\partial^- U_1 \sqsubseteq \partial^- U$, $\partial^+ U_2 \sqsubseteq \partial^+ U$, $U_1 \cap U_2 \sqsubseteq \partial^+ U$, and $U_1 \cap U_2 \sqsubseteq \partial^- U$.
 - A constructible molecule with a largest element is called an atom.

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \Box)$ of *n*-dimensional closed subsets of P. These are called constructible *n*-molecules.

• Constructible *n*-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^+ U) = \partial^{\alpha}(\partial^- U)$ and $\partial^+ U \cap \partial^- U = \partial(\partial^{\alpha} U).$

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $(C\mathcal{M}ol_nP, \Box)$ of *n*-dimensional closed subsets of P. These are called constructible *n*-molecules.

• Constructible n-molecules are globular in the sense that

 $\partial^{\alpha}(\partial^+ U) = \partial^{\alpha}(\partial^- U)$ and $\partial^+ U \cap \partial^- U = \partial(\partial^{\alpha} U).$

- An oriented thin poset P is called a constructible directed complex if cl(x) is a constructible atom for all $x \in P$.
- The full subcategory of **ogPos**_{in} consisting of constructible directed complexes is denoted by **CDCpx**.