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Introduction

@ A central goal in this work is to connect the following domains:

Higher-dimensional Directed
(algebraic) (algebraic)
rewriting topology

@ These are both approaches to directed calculations/processes.
@ In each, we have notions of homotopy:

Squier & coherence Natural homotopy

We would like to relate these two invariants.
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Introduction

@ A central goal in this work is to connect the following domains:

Higher-dimensional Directed
(algebraic) (algebraic)
rewriting topology

@ These are both approaches to directed calculations/processes.
o More generally, these approaches complement each other:

Generators Directed CW complexes
Finiteness conditions Cellular homotopy

Algebraic description of
directed homotopy
Topological Squier’s theorem

Natural homotopy
Topology and continuity
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Introduction

@ A central goal in this work is to connect the following domains:

Higher-dimensional Directed
(algebraic) (algebraic)
rewriting topology

@ These are both approaches to directed calculations/processes.
o More generally, these approaches complement each other:

Generators Directed CW complexes
Finiteness conditions Cellular homotopy

Algebraic description of
directed homotopy
Topological Squier’s theorem

Natural homotopy
Topology and continuity

e Hadzihasanovic’s constructible directed complexes provide a
combinatorial presentation of higher categories.
o Additionally, they are realisable as regular CW complexes.
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@ Constructible directed complexes and polygraphs

© CW complexes and directed topological cells

@ Realisation (work in progress. .. )




Constructible directed complexes and polygraphs
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Oriented thin posets

N.B. All results and definitions in this section are from recent works by
Amar Hadzihasanovic.

What are the properties required of a “face poset” for higher categorical
cells?

e Recall that the Hasse diagram HP of P is the directed graph with
HPy =P HP, = {(y,z) |y covers x}.
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Oriented thin posets

What are the properties required of a “face poset” for higher categorical

cells?
@ A notion of dimension : graded. .
o to each x € P we associate dim(x) € N, s
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Oriented thin posets

What are the properties required of a “face poset” for higher categorical
cells?
@ A notion of dimension : graded.
o to each x € P we associate dim(x) € N,
@ A notion of source and target : oriented.
e to each edge in the Hasse diagram of P, we associate either + or —,
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Oriented thin posets

What are the properties required of a “face poset” for higher categorical
cells?
@ A notion of dimension : graded.
o to each x € P we associate dim(x) € N,
@ A notion of source and target : oriented.
e to each edge in the Hasse diagram of P, we associate either + or —,
o A manifold-like condition : thinness.

o We ask that elements intersect nicely, both geometrically and w.r.t.
orientation

o Yy e
Z1 / \2’2
N,
T

with 01151 = —agﬁg.
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Oriented thin posets

What are the properties required of a “face poset” for higher categorical
cells?
@ A notion of dimension : graded.
o to each x € P we associate dim(x) € N,
@ A notion of source and target : oriented.
e to each edge in the Hasse diagram of P, we associate either + or —,
o A manifold-like condition : thinness.

o We ask that elements intersect nicely, both geometrically and w.r.t.
orientation

a1 Yy g
Z1 / \ z9
N, e
with 01151 = —agﬁg. -3- }'\—

e P is then an oriented thin poset, and we define input/output
borders, dimension/purity of closed subsets. . .
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Examples
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Let P be an oriented thin poset. For each n € N, we single out a a
poset (CMol, P,C) of n-dimensional closed pure subsets of P. These
are called constructible n-molecules.
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a

poset (CMol, P,C) of n-dimensional closed pure subsets of P. These
are called constructible n-molecules.

e Constructible n-molecules are globular in the sense that
0%(0TU) =00 U) and 0TUNO U = 9(0°U).
for o € {+, —}.
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a

poset (CMol, P,C) of n-dimensional closed pure subsets of P. These
are called constructible n-molecules.

e Constructible n-molecules are globular in the sense that
0%(0TU) =00 U) and 0TUNO U = 9(0°U).
for o € {+, —}.

e A n-molecule with a greatest element is called an atom.
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a

poset (CMol, P,C) of n-dimensional closed pure subsets of P. These
are called constructible n-molecules.

e Constructible n-molecules are globular in the sense that
0%(0TU) =00 U) and 0TUNO U = 9(0°U).
for o € {+, —}.
e A n-molecule with a greatest element is called an atom.

@ An oriented thin poset P is called a constructible directed complex
if cl(x) is a constructible atom for all z € P.
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a
poset (CMol, P,C) of n-dimensional closed pure subsets of P. These
are called constructible n-molecules.

e Constructible n-molecules are globular in the sense that

0%(0TU) =00 U) and 0TUNO U = 9(0°U).
for o € {+, —}.
e A n-molecule with a greatest element is called an atom.
@ An oriented thin poset P is called a constructible directed complex

if cl(x) is a constructible atom for all z € P.

o Let ogPos,, denote the category of oriented graded posets and
closed inclusions.
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a
poset (CMol, P,C) of n-dimensional closed pure subsets of P. These
are called constructible n-molecules.
e Constructible n-molecules are globular in the sense that
0%(0TU) =00 U) and 0TUNO U = 9(0°U).
for o € {+, —}.
e A n-molecule with a greatest element is called an atom.
@ An oriented thin poset P is called a constructible directed complex
if cl(x) is a constructible atom for all z € P.

o The full subcategory of ogPos;, consisting of constructible
directed complexes is denoted by CDCpx.

Cameron Calk (LIX) Abstract Rewriting



Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a
poset (CMol, P,C) of n-dimensional closed pure subsets of P. These
are called constructible n-molecules.

e Constructible n-molecules are globular in the sense that
0%(0TU) =00 U) and 0TUNO U = 9(0°U).
for o € {+, —}.
e A n-molecule with a greatest element is called an atom.
@ An oriented thin poset P is called a constructible directed complex
if cl(x) is a constructible atom for all z € P.

o The full subcategory of ogPos;, consisting of constructible
directed complexes is denoted by CDCpx.

Proposition

A constructible directed complex is the colimit of the diagram of
inclusions of its atoms.
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Examples
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tible polygraphs

o Let CAtom be a skeleton of the full subcategory of CDCpx
consisting of constructible atoms.
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Constructible polygraphs

o Let CAtom be a skeleton of the full subcategory of CDCpx
consisting of constructible atoms.
e A constructible polygraph is a presheaf

X : CAtom®” — Set.

An element z € X (U), for dim(U) = n is a n-cell of shape U.
o This is similar to simplicial complexes, but with more complex
(globular) base shapes.

-
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Constructible polygraphs

@ A constructible polygraph is a presheaf

X : CAtom®” — Set.

An element z € X (U), for dim(U) = n is a n-cell of shape U.
e Constructible polygraphs and morphisms of presheaves form a
category CPol.
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Constructible polygraphs

@ A constructible polygraph is a presheaf
X : CAtom® — Set.

An element z € X (U), for dim(U) = n is a n-cell of shape U.
@ Via Steiner’s theory of directed complexes, Hadzihasanovic shows
that there exists a functor

CDCpx — wCat

@ The restriction of this functor to CAtom is denoted by (—),,.
@ The left Kan extension of the Yoneda embedding
CAtom — CPol yields a functor

CPol— wCat

UeCAtom
X X, = / U x X(U)
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Constructible polygraphs

@ A constructible polygraph is a presheaf
X : CAtom® — Set.

An element z € X (U), for dim(U) = n is a n-cell of shape U.
@ The left Kan extension of the Yoneda embedding
CAtom — CPol yields a functor

CPol— wCat
UeCAtom
X— X, ::/ U, x X(U)

@ Recently, a theorem was in fact found to be a conjecture:

Conjecture

For a constructible polygraph X, the omega category X, admits the
structure of a polygraph whose n-dimensional generators are indexed by
n-cells of X.
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Constructible polygraphs

@ A constructible polygraph is a presheaf
X : CAtom® — Set.

An element z € X (U), for dim(U) = n is a n-cell of shape U.
o Hadzihasanovic further shows that there exists a functor

CDCpx — cgHaus

@ The restriction of this functor to CAtom is denoted by | — |.
o The left Kan extension of the Yoneda embedding
CAtom — CPol yields a functor

CPol— cgHaus

UeCAtom
X x| = | U] x X(U)
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Constructible polygraphs

@ A constructible polygraph is a presheaf
X : CAtom® — Set.

An element x € X (U), for dim(U) = n is a n-cell of shape U.
@ The left Kan extension of the Yoneda embedding
CAtom — CPol yields a functor

CPol— cgHaus
UeCAtom
Xi—>|X|::/ |U| x X(U)

e This yields spaces with the structure of CW complex:

Theorem

For a constructible polygraph X, the space | — | admits the structure of
a CW complex whose generating n-cells are indexed by n-cells of X.
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CW complexes and directed topological cells

Cameron Calk (LIX) Abstract Rewriting



CW complexes

e Morally, a CW complex X is a space built from topological cells
homeomorphic to n-balls D".
o Start with a discrete set of points to form the 0-skeleton XV.
o Having constructed the (n — 1)-skeleton X™~1, place the borders of
n-balls via attaching maps
Gy s SV — XL
e Form the n-skeleton

xm = X" [ en/4osda

where the quotient indicates the identification of the images of the
attaching maps ¢,.
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Globular CW complexes

@ A notion of directed CW complex was introduced by P. Gaucher
and E. Goubault. The directed topological cells they used are built
using the following construction.

e Consider the globe functor:

Glob : Top— PoTop
X— (X x I/ ~,<)
where (z,t) ~ (2/,¢') iff t =t € {0,1} and
< (a/,t') for all (z,2',t) € X x X x I,
o (z,t) < (a/,1) for all (z,2',t) € X x X x I,
t) < («/,t') if and only if z = 2’ and ¢,¢' €]0,1[s.t. ¢t < t'.

M
ook I YXxftl
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Globular CW complexes

@ A notion of directed CW complex was introduced by P. Gaucher
and E. Goubault. The directed topological cells they used are built
using the following construction.

e Consider the globe functor:

Glob : Top— PoTop
X— (X x I/ ~,<)
e We may then define globular cells by setting
D"+ = Glob(D").
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Globular CW complexes

@ A notion of directed CW complex was introduced by P. Gaucher
and E. Goubault. The directed topological cells they used are built
using the following construction.

e Consider the globe functor:

Glob : Top— PoTop
X— (X x I/ ~,<)
e We may then define globular cells by setting
D"+ = Glob(D").

@ These are not flexible enough to accommodate glueing along
partial borders:

Y we dewk Sdlaon
/ &~ o Wb W

dikowaonsnuic o B
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The directed globe functor

e Consider the directed globe functor:
_>
Gl : PoTop— PoTop
(X7 SX)'—> (X X I/ ~ S)
where (z,t) ~ (2/,t') iff t =t' € {0,1} and
)

o (2,0) < (o/,t) for all (z,2',t) € X x X x I,
o (z,t) < (a/,1) for all (z,2',t) € X x X x I,
o (z,t) < (a',t') if and only if ¢,#' €]0, 1] and
o t<t or
o t=t and z <x z’.

IR

\N\J\A)
1lwliw.\' I Xxfed
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The directed globe functor

e Consider the directed globe functor:

_>
Gl : PoTop— PoTop
(X, Sx)— (X x I/ ~, <)

o
@ We then define directed globes inductively using Gi:

D0 = {x} and forn > 1, D" = C_il(ﬁ"_l).

Cameron Calk (LIX) Abstract Rewriting 5/02/2021



The directed globe functor

e Consider the directed globe functor:

_>
Gl : PoTop— PoTop
(X, Sx)— (X x I/ ~, <)

o
@ We then define directed globes inductively using Gi:

D0 = {x} and forn > 1, D" = C_il(ﬁ"_l).
@ These are thus quotients of the n-cube:
["=T' %I BT
s DEx IR S S D T D
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The directed globe functor

e Consider the directed globe functor:

_>
Gl : PoTop— PoTop
(X, Sx)— (X x I/ ~, <)

o
@ We then define directed globes inductively using Gi:

D0 = {x} and forn > 1, D" = C_il(ﬁ"_l).
@ These are thus quotients of the n-cube:
["=T' %I BT
s DEx IR S S D T D

@ In this view, points in ﬁ” are represented by n-tuples (t,,...,t1),
the quotient being given by

(tny -y t1) ~ (t,...,t)) <= Fit;=t, =bfor be {0,1},
and Vj < i,t; = t}.
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Directed globes

@ We obtain a nice definition for borders; for any £k <n — 1 set
O (D™ = {{tm- - thr2, O, b 1)t € T}
0 (B™) == {(tnr -+ toras L by -, 01)|ts € T}
We have ag(ﬁ") ~ Bk,

@ These cells are 1-dimensionally oriented in each dimension; the
variable ¢ corresponds to “cells of dimension k”.

P«-m

Y 4 Lt—g&gﬂ
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Structural maps

@ We now need appropriate structural maps for directed globes.
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Structural maps

@ We now need appropriate structural maps for directed globes.

e Fori: D' — D!, we take
o subintervals (non degenerate).
o constant maps (degenerate).
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Structural maps

@ We now need appropriate structural maps for directed globes.
o Fori: D' — D', we take

o subintervals (non-degenerate).

e constant maps (d%enerate).

o Suppose that maps [D" ! ﬁ"fl]

9

A mapi: D" — D" is given by:
e a monotonic map ¢: I — I,
e a continuous family of maps

Jioy I — DD Y
such that jy and j; are constant maps and j; is non degenerate for
t €]0,1].
Then ¢ is the quotient map of

ﬁ”_l X I— ﬁ”
(z, )— (je(2), (1))

These maps are called subglobes.

have been constructed.
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Structural maps
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Structural maps

o We generate maps ﬁk — ﬁ" with subglobes and total borders:
ia . ﬁn—l ~ 8(13” SN ﬁn

(tnfl, .. .t1)>—> (b, tn—1,--- ,tl),

L] ° a;z
D o
()
— —— —
P L
° o 1 “ «
|
=4
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Realisation (work in progress. .. )
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Directed geometric realisation
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Directed geometric realisation
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Thank You




Coming soon:

Algebraic Rewriting Seminar

e Organisers:

o Benjamin Dupont (bdupont@math.univ-lyonl.fr)
o Cyrille Chenavier (cyrille.chenavier@unilim.fr)
o Cameron Calk (cameron.calk@lix.polytechnique.fr)

o Modalities:

o Thursdays 16h - 18h (bi)weekly.
e Seminar held virtually.
e Expected to start in March

o Feel free to contact us with any questions or comments.

See you soon!
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Graded posets

N.B. All results and definitions in this section are from recent works by
Amar Hadzihasanovic. Let P be a poset.

o Let x,y € P. We say that y covers x if
r<y and VY ePax<y <y=19y =y
o The Hasse diagram HP of P is the directed graph with
HPy=P HP, = {(y,z) |y covers x}.

@ Denote by P, the poset P with a least element | added.

o P is graded if for every z, all paths from = to L have the same
length [,. We set
dim(z) =1, — 1

and P := {z € P|dim(z) = n}.
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Orientation, closures and borders

Let P be a graded poset.
@ An orientation of P is a map

o:HP, — {—,+}.
In this case we say that P is an oriented graded poset.
o Recall that for U C P, the closure of U is defined as
cd(U)={x€ P|F3z e U,z < z},
and U is closed if U = ¢l(U).
e We set dim U = max{dim(z)|z € U} and dim(0) = —1.
e A closed n-dimensional subset U is pure if U = cl(U™).

Cameron Calk (LIX) Abstract Rewriting 5/02/2021



Orientation, closures and borders

Let P be a graded poset.
@ An orientation of P is a map
o:HP, — {—,+}.

In this case we say that P is an oriented graded poset.
o Recall that for U C P, the closure of U is defined as

cd(U)={x€ P|F3z e U,z < z},

and U is closed if U = ¢l(U).

e We set dim U = max{dim(z)|z € U} and dim(0) = —1.

o Closed subsets inherit gradedness and orientation from P. For a
closed n-dimensional subset U, we set

AU := {2z eU Y |VyeU, if y covers z, then oy, z) = a}
U == c(AU)U{zeU|YyeUz<y= dim(y) <n},
AU :=ATUUAT, oU :==9TUuUo U.
e 0, U (resp. 0, U) is the input (resp. output) boundary of U.
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Orientation, closures and borders

Let P be a graded poset.
@ An orientation of P is a map
o:HP, — {—,+}.
In this case we say that P is an oriented graded poset.
o Recall that for U C P, the closure of U is defined as
cd(U)={x€ P|F3z e U,z < z},
and U is closed if U = ¢l(U).
e We set dim U = max{dim(z)|z € U} and dim(0) = —1.
@ An inclusion of oriented thin posets is a closed embedding of

posets that is compatible with the orientation maps. We denote
the category of oriented graded posets and inclusions by ogPos,,,
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Oriented thin posets

Let P be an oriented graded poset.
@ A consequence of gradedness is that for x < y, all paths from z to
y in HP have the same length dim(y) — dim(z). This is the length
of the interval [z, y].
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Oriented thin posets

Let P be an oriented graded poset.
@ A consequence of gradedness is that for x < y, all paths from z to
y in HP have the same length dim(y) — dim(z). This is the length
of the interval [z, y].
e P is thin if any interval [z, y] of length 2 in P| contains exactly 4
elements:

zl/y\zg
7
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Oriented thin posets

Let P be an oriented graded poset.

@ A consequence of gradedness is that for x < y, all paths from z to
y in HP have the same length dim(y) — dim(z). This is the length
of the interval [z, y].

e If P is oriented, we extend o to P by setting o(x, L) = + for all
minimal z € P.

e P is an oriented thin poset if for any interval [z, y] of length 2 we
have thinness:

[e %1 Y sz
21/ \22
PN

and additionally o181 = —asfs.
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Oriented thin posets

Let P be an oriented graded poset.

@ A consequence of gradedness is that for x < y, all paths from z to
y in HP have the same length dim(y) — dim(z). This is the length
of the interval [z, y].

e If P is oriented, we extend o to P by setting o(x, L) = + for all
minimal z € P.

e P is an oriented thin poset if for any interval [z, y] of length 2 we
have thinness:

[e %1 Y sz
21/ \22
PN

and additionally o181 = —asfs.
e Examples:
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a

poset (CMol, P,C) of n-dimensional closed subsets of P. These are
called constructible n-molecules.

o CMolyP = {{z }|dim(z) = 0} with the discrete order.
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Let P be an oriented thin poset. For each n € N, we single out a a
poset (CMol, P,C) of n-dimensional closed subsets of P. These are
called constructible n-molecules.

o CMolyP = {{z }|dim(z) = 0} with the discrete order.
e For a pure n-dimensional subset U, we have U € CMol, P if
0TU,0~U € CMol,_1P and either
e U has a greatest element, or
e U = U, UU; such that
e Uy, Uz partition the maximal elements of U,
e Ui NU; = 8+U1 No~ U e CMOln_lp, and
e OTULLCOU, T U, E&‘*U, U1 NUs gé)*U, and Uy NU; C O U.
e A constructible molecule with a largest element is called an atom.
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a

poset (CMol, P,C) of n-dimensional closed subsets of P. These are
called constructible n-molecules.

e Constructible n-molecules are globular in the sense that

90+ U) = 8(0"U) and ATUNO U = (V).
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Constructible directed complexes

Let P be an oriented thin poset. For each n € N, we single out a a

poset (CMol, P,C) of n-dimensional closed subsets of P. These are
called constructible n-molecules.

e Constructible n-molecules are globular in the sense that
0*(0TU) =00 U) and 0TUNO U = 9(0°U).

@ An oriented thin poset P is called a constructible directed complex
if cl(z) is a constructible atom for all z € P.

e The full subcategory of ogPos;, consisting of constructible
directed complexes is denoted by CDCpx.
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