Geometric realisation of réghlay constructible polygraphs

Journées LHC:

Logique, homotopie, \& catégories

Cameron Calk
Laboratoire d'Informatique de l'École Polytechnique (LIX)

$5^{\text {th }}$ of February 2021

INSTITUT
POLYTECHNIQUE
DEPARIS

Introduction

- A central goal in this work is to connect the following domains:

Higher-dimensional (algebraic) rewriting

Directed
(algebraic)
topology

- These are both approaches to directed calculations/processes.
- In each, we have notions of homotopy:

Squier \& coherence Natural homotopy
We would like to relate these two invariants.

Introduction

- A central goal in this work is to connect the following domains:

Higher-dimensional (algebraic) rewriting

Directed (algebraic) topology

- These are both approaches to directed calculations/processes.
- More generally, these approaches complement each other:

Generators
Finiteness conditions
Algebraic description of directed homotopy
Topological Squier's theorem

Introduction

- A central goal in this work is to connect the following domains:

Higher-dimensional (algebraic) rewriting

- These are both approaches to directed calculations/processes.
- More generally, these approaches complement each other:

Generators
Finiteness conditions
Algebraic description of directed homotopy
Topological Squier's theorem

- Hadzihasanovic's constructible directed complexes provide a combinatorial presentation of higher categories.
- Additionally, they are realisable as regular CW complexes.
(1) Constructible directed complexes and polygraphs
(2) CW complexes and directed topological cells
(3) Realisation (work in progress...)

Constructible directed complexes and polygraphs

Oriented thin posets

N.B. All results and definitions in this section are from recent works by Amar Hadzihasanovic.
What are the properties required of a "face poset" for higher categorical cells?

- Recall that the Hasse diagram $\mathcal{H} P$ of P is the directed graph with

$$
\mathcal{H} P_{0}=P \quad \mathcal{H} P_{1}=\{(y, x) \mid y \text { covers } x\}
$$

Oriented thin posets

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
- to each $x \in P$ we associate $\operatorname{dim}(x) \in \mathbb{N}$,

$$
n+1
$$

n

$$
n-1
$$

4

Oriented thin posets

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
- to each $x \in P$ we associate $\operatorname{dim}(x) \in \mathbb{N}$,
- A notion of source and target : oriented.
- to each edge in the Hasse diagram of P, we associate either + or - ,

Oriented thin posets

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
- to each $x \in P$ we associate $\operatorname{dim}(x) \in \mathbb{N}$,
- A notion of source and target : oriented.
- to each edge in the Hasse diagram of P, we associate either + or - ,
- A manifold-like condition : thinness.
- We ask that elements intersect nicely, both geometrically and w.r.t. orientation

with $\alpha_{1} \beta_{1}=-\alpha_{2} \beta_{2}$.

Oriented thin posets

What are the properties required of a "face poset" for higher categorical cells?

- A notion of dimension : graded.
- to each $x \in P$ we associate $\operatorname{dim}(x) \in \mathbb{N}$,
- A notion of source and target : oriented.
- to each edge in the Hasse diagram of P, we associate either + or - ,
- A manifold-like condition : thinness.
- We ask that elements intersect nicely, both geometrically and w.r.t. orientation

with $\alpha_{1} \beta_{1}=-\alpha_{2} \beta_{2}$.

- P is then an oriented thin poset, and we define input/output borders, dimension/purity of closed subsets...

Examples

u
x
ω

w

Constructible directed complexes
Let P be an oriented thin post. For each $n \in \mathbb{N}$, we single out a a pose $\left(C \mathcal{M o l}{ }_{n} P, \sqsubset\right)$ of n-dimensional closed pure subsets of P. These are called constructible n-molecules.
$\rightarrow \mathrm{O}$-molecules are O -dimensional elements.
$\rightarrow u$-molecules are either:

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l}{ }_{n} P, \sqsubset\right)$ of n-dimensional closed pure subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$

for $\alpha \in\{+,-\}$.

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l}{ }_{n} P, \sqsubset\right)$ of n-dimensional closed pure subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$

for $\alpha \in\{+,-\}$.

- A n-molecule with a greatest element is called an atom.

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l} l_{n} P, \sqsubset\right)$ of n-dimensional closed pure subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$

for $\alpha \in\{+,-\}$.

- A n-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if $\operatorname{cl}(x)$ is a constructible atom for all $x \in P$.

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l} l_{n} P, \sqsubset\right)$ of n-dimensional closed pure subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$

for $\alpha \in\{+,-\}$.

- A n-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if $\operatorname{cl}(x)$ is a constructible atom for all $x \in P$.
- Let $\mathbf{o g P o s}$ in denote the category of oriented graded posets and closed inclusions.

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l} l_{n} P, \sqsubset\right)$ of n-dimensional closed pure subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$

for $\alpha \in\{+,-\}$.

- A n-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if $\operatorname{cl}(x)$ is a constructible atom for all $x \in P$.
- The full subcategory of $\mathbf{o g} \mathbf{P o s}_{i n}$ consisting of constructible directed complexes is denoted by CDCpx.

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l} l_{n} P, \sqsubset\right)$ of n-dimensional closed pure subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$ for $\alpha \in\{+,-\}$.

- A n-molecule with a greatest element is called an atom.
- An oriented thin poset P is called a constructible directed complex if $\operatorname{cl}(x)$ is a constructible atom for all $x \in P$.
- The full subcategory of $\mathbf{o g} \mathbf{P o s}_{i n}$ consisting of constructible directed complexes is denoted by CDCpx.

Proposition

A constructible directed complex is the colimit of the diagram of inclusions of its atoms.

Examples

Ta non-atomic constructible 2 -molecule.

w

Thin is not a constructible molecule...

Constructible polygraphs

- Let CAtom be a skeleton of the full subcategory of CDCpx consisting of constructible atoms.

Constructible polygraphs

- Let CAtom be a skeleton of the full subcategory of CDCpx consisting of constructible atoms.
- A constructible polygraph is a presheaf

$$
X: \text { CAtom }^{o p} \longrightarrow \text { Set. }
$$

An element $x \in X(U)$, for $\operatorname{dim}(U)=n$ is a n-cell of shape U.

- This is similar to simplicial complexes, but with more complex (globular) base shapes.

Constructible polygraphs

- A constructible polygraph is a presheaf

$$
X: \text { CAtom }^{o p} \longrightarrow \text { Set. }
$$

An element $x \in X(U)$, for $\operatorname{dim}(U)=n$ is a n-cell of shape U.

- Constructible polygraphs and morphisms of presheaves form a category CPol.

Constructible polygraphs

- A constructible polygraph is a presheaf

$$
X: \text { CAtom }^{o p} \longrightarrow \text { Set. }
$$

An element $x \in X(U)$, for $\operatorname{dim}(U)=n$ is a n-cell of shape U.

- Via Steiner's theory of directed complexes, Hadzihasanovic shows that there exists a functor

CDCpx $\longrightarrow \omega$ Cat

- The restriction of this functor to CAtom is denoted by $(-)_{\omega}$.
- The left Kan extension of the Yoneda embedding
$\mathbf{C A t o m} \rightarrow \mathbf{C P o l}$ yields a functor
CPol $\longrightarrow \omega$ Cat

$$
X \longmapsto X_{\omega}:=\int^{U \in \mathbf{C A t o m}} U_{\omega} \times X(U)
$$

Constructible polygraphs

- A constructible polygraph is a presheaf

$$
X: \text { CAtom }^{o p} \longrightarrow \text { Set. }
$$

An element $x \in X(U)$, for $\operatorname{dim}(U)=n$ is a n-cell of shape U.

- The left Kan extension of the Yoneda embedding
$\mathbf{C A t o m} \rightarrow \mathbf{C P o l}$ yields a functor
$\mathbf{C P o l} \longrightarrow \omega \mathbf{C a t}$

$$
X \longmapsto X_{\omega}:=\int^{U \in \mathbf{C A t o m}} U_{\omega} \times X(U)
$$

- Recently, a theorem was in fact found to be a conjecture:

Conjecture

For a constructible polygraph X, the omega category X_{ω} admits the structure of a polygraph whose n-dimensional generators are indexed by n-cells of X.

Constructible polygraphs

- A constructible polygraph is a presheaf

$$
X: \text { CAtom }^{o p} \longrightarrow \text { Set. }
$$

An element $x \in X(U)$, for $\operatorname{dim}(U)=n$ is a n-cell of shape U.

- Hadzihasanovic further shows that there exists a functor

CDCpx \longrightarrow cgHaus

- The restriction of this functor to CAtom is denoted by $|-|$.
- The left Kan extension of the Yoneda embedding $\mathbf{C A t o m} \rightarrow \mathbf{C P o l}$ yields a functor
$\mathrm{CPol} \longrightarrow$ cgHaus

$$
X \longmapsto|X|:=\int^{U \in \mathbf{C A t o m}}|U| \times X(U)
$$

Constructible polygraphs

- A constructible polygraph is a presheaf

$$
X: \text { CAtom }^{o p} \longrightarrow \text { Set. }
$$

An element $x \in X(U)$, for $\operatorname{dim}(U)=n$ is a n-cell of shape U.

- The left Kan extension of the Yoneda embedding
$\mathbf{C A t o m} \rightarrow \mathbf{C P o l}$ yields a functor

CPol \longrightarrow cgHaus

$$
X \longmapsto|X|:=\int^{U \in \mathbf{C A t o m}}|U| \times X(U)
$$

- This yields spaces with the structure of CW complex:

Theorem

For a constructible polygraph X, the space $|-|$ admits the structure of a CW complex whose generating n-cells are indexed by n-cells of X.

CW complexes and directed topological cells

CW complexes

- Morally, a CW complex X is a space built from topological cells homeomorphic to n-balls D^{n}.
- Start with a discrete set of points to form the 0 -skeleton X^{0}.
- Having constructed the $(n-1)$-skeleton X^{n-1}, place the borders of n-balls via attaching maps

$$
\phi_{x}: S^{n-1} \longrightarrow X^{n-1}
$$

- Form the n-skeleton

$$
X^{n}=X^{n-1} \coprod_{x} e_{x}^{n} /\left\{\phi_{x}\right\}_{x}
$$

where the quotient indicates the identification of the images of the attaching maps ϕ_{x}.

Globular CW complexes

- A notion of directed CW complex was introduced by P. Gaucher and E. Goubault. The directed topological cells they used are built using the following construction.
- Consider the globe functor:

$$
\text { Glob : Top } \longrightarrow \text { PoTop }
$$

$$
X \longmapsto(X \times I / \sim, \leq)
$$

where $(x, t) \sim\left(x^{\prime}, t^{\prime}\right)$ iff $t=t^{\prime} \in\{0,1\}$ and

- $(x, 0) \leq\left(x^{\prime}, t^{\prime}\right)$ for all $\left(x, x^{\prime}, t\right) \in X \times X \times I$,
- $(x, t) \leq\left(x^{\prime}, 1\right)$ for all $\left(x, x^{\prime}, t\right) \in X \times X \times I$,
- $(x, t) \leq\left(x^{\prime}, t^{\prime}\right)$ if and only if $x=x^{\prime}$ and $\left.t, t^{\prime} \in\right] 0,1\left[\right.$ s.t. $t \leq t^{\prime}$.

Globular CW complexes

- A notion of directed CW complex was introduced by P. Gaucher and E. Goubault. The directed topological cells they used are built using the following construction.
- Consider the globe functor:

$$
\begin{aligned}
& \text { Glob }: \text { Top } \longrightarrow \text { PoTop } \\
& X \longmapsto(X \times I / \sim, \leq)
\end{aligned}
$$

- We may then define globular cells by setting

$$
\vec{D}^{n+1}:=\operatorname{Glob}\left(D^{n}\right)
$$

Globular CW complexes

- A notion of directed CW complex was introduced by P. Gaucher and E. Goubault. The directed topological cells they used are built using the following construction.
- Consider the globe functor:

$$
\begin{aligned}
\text { Glob }: \text { Top } & \longrightarrow \text { PoTop } \\
X \longmapsto & (X \times I / \sim, \leq)
\end{aligned}
$$

- We may then define globular cells by setting

$$
\vec{D}^{n+1}:=\operatorname{Glob}\left(D^{n}\right)
$$

- These are not flexible enough to accommodate glueing along partial borders:

we doit obtain
a space which is
dihomeonurphic to \vec{D}^{2}...

The directed globe functor

- Consider the directed globe functor:

$$
\begin{aligned}
& \overrightarrow{G l}: \text { PoTop } \longrightarrow \text { PoTop } \\
& \quad\left(X, \leq_{X}\right) \longmapsto(X \times I / \sim, \leq)
\end{aligned}
$$

where $(x, t) \sim\left(x^{\prime}, t^{\prime}\right)$ iff $t=t^{\prime} \in\{0,1\}$ and

- $(x, 0) \leq\left(x^{\prime}, t^{\prime}\right)$ for all $\left(x, x^{\prime}, t\right) \in X \times X \times I$,
- $(x, t) \leq\left(x^{\prime}, 1\right)$ for all $\left(x, x^{\prime}, t\right) \in X \times X \times I$,
- $(x, t) \leq\left(x^{\prime}, t^{\prime}\right)$ if and only if $\left.t, t^{\prime} \in\right] 0,1[$ and
- $t<t^{\prime}$, or
- $t=t^{\prime}$ and $x \leq_{X} x^{\prime}$.

The directed globe functor

- Consider the directed globe functor:

$$
\begin{aligned}
& \overrightarrow{G l}: \text { PoTop } \longrightarrow \text { PoTop } \\
& \quad\left(X, \leq_{X}\right) \longmapsto(X \times I / \sim, \leq)
\end{aligned}
$$

- We then define directed globes inductively using $\overrightarrow{G l}$:

$$
\overrightarrow{\bar{D}}^{0}:=\{*\} \quad \text { and for } n \geq 1, \quad \vec{D}^{n}:=\vec{G} l\left(\vec{D}^{n-1}\right)
$$

The directed globe functor

- Consider the directed globe functor:

$$
\begin{aligned}
& \overrightarrow{G l}: \text { PoTop } \longrightarrow \text { PoTop } \\
& \quad\left(X, \leq_{X}\right) \longmapsto(X \times I / \sim, \leq)
\end{aligned}
$$

- We then define directed globes inductively using $\overrightarrow{G l}$:

$$
\vec{D}^{0}:=\{*\} \quad \text { and for } n \geq 1, \quad \vec{D}^{n}:=\overrightarrow{G l}\left(\vec{D}^{n-1}\right)
$$

- These are thus quotients of the n-cube:

$$
\begin{aligned}
I^{n}= & \overrightarrow{\bar{D}}^{1} \times I^{n-1} \rightarrow \overrightarrow{\bar{D}}^{2} \times I^{n-2} \rightarrow \cdots \\
& \cdots \rightarrow \vec{D}^{k} \times I^{n-k} \rightarrow \cdots \rightarrow \overrightarrow{\bar{D}}^{n-1} \times I \rightarrow \vec{D}^{n}
\end{aligned}
$$

\cdots

The directed globe functor

- Consider the directed globe functor:

$$
\begin{aligned}
& \overrightarrow{G l}: \text { PoTop } \longrightarrow \text { PoTop } \\
& \quad\left(X, \leq_{X}\right) \longmapsto(X \times I / \sim, \leq)
\end{aligned}
$$

- We then define directed globes inductively using $\overrightarrow{G l}$:

$$
\vec{D}^{0}:=\{*\} \quad \text { and for } n \geq 1, \quad \vec{D}^{n}:=\overrightarrow{G l}\left(\vec{D}^{n-1}\right)
$$

- These are thus quotients of the n-cube:

$$
\begin{aligned}
I^{n}= & \vec{D}^{1} \times I^{n-1} \rightarrow \vec{D}^{2} \times I^{n-2} \rightarrow \cdots \\
& \cdots \rightarrow \vec{D}^{k} \times I^{n-k} \rightarrow \cdots \rightarrow \overrightarrow{\bar{D}}^{n-1} \times I \rightarrow \overrightarrow{\bar{D}}^{n} .
\end{aligned}
$$

- In this view, points in \vec{D}^{n} are represented by n-tuples $\left(t_{n}, \ldots, t_{1}\right)$, the quotient being given by

$$
\begin{array}{r}
\left(t_{n}, \ldots, t_{1}\right) \sim\left(t_{n}^{\prime}, \ldots, t_{1}^{\prime}\right) \Longleftrightarrow \exists i, t_{i}=t_{i}^{\prime}=b \text { for } b \in\{0,1\} \\
\text { and } \forall j<i, t_{j}=t_{j}^{\prime} .
\end{array}
$$

Directed globes

- We obtain a nice definition for borders; for any $k \leq n-1$ set

$$
\begin{aligned}
\partial_{k}^{-}\left(\overline{\bar{D}}^{n}\right) & :=\left\{\overline{\left(t_{n}, \ldots, t_{k+2}, 0, t_{k}, \ldots, t_{1}\right)} \mid t_{i} \in I\right\} \\
\partial_{k}^{+}\left(\overrightarrow{\bar{D}}^{n}\right) & :=\left\{\overline{\left(t_{n}, \ldots, t_{k+2}, 1, t_{k}, \ldots, t_{1}\right)} \mid t_{i} \in I\right\} .
\end{aligned}
$$

We have $\partial_{k}^{\alpha}\left(\vec{D}^{n}\right) \cong \vec{D}^{k}$.

- These cells are 1-dimensionally oriented in each dimension; the variable t_{k} corresponds to "cells of dimension k ".

$$
\begin{aligned}
& \longrightarrow 1 \text {-cells } \\
& 2 \text { cells. }
\end{aligned}
$$

Structural maps

- We now need appropriate structural maps for directed globes.

Structural maps

- We now need appropriate structural maps for directed globes.
- For $i: \vec{D}^{1} \rightarrow \vec{D}^{1}$, we take
- subintervals (non-degenerate).
- constant maps (degenerate).

Structural maps

- We now need appropriate structural maps for directed globes.
- For $i: \vec{D}^{1} \rightarrow \vec{D}^{1}$, we take
- subintervals (non-degenerate).
- constant maps (degenerate).
- Suppose that maps $\left[\overrightarrow{\bar{D}}^{n-1}, \bar{D}^{n-1}\right]$ have been constructed.

A map $i: \vec{D}^{n} \rightarrow \bar{D}^{n}$ is given by:

- a monotonic map $\iota: I \rightarrow I$,
- a continuous family of maps

$$
j_{(-)}: I \longrightarrow\left[\vec{D}^{n-1}, \vec{D}^{n-1}\right]
$$

such that j_{0} and j_{1} are constant maps and j_{t} is non degenerate for $t \in] 0,1[$.
Then i is the quotient map of

$$
\begin{aligned}
\vec{D}^{n-1} \times I & \vec{D}^{n} \\
(x, t) & \longmapsto\left(j_{t}(x), \iota(t)\right) .
\end{aligned}
$$

These maps are called subglobes.

Structural maps

Structural maps

- We generate maps $\vec{D}^{k} \rightarrow \overrightarrow{\bar{D}}^{n}$ with subglobes and total borders:

$$
\begin{aligned}
i_{\alpha}: \overrightarrow{\bar{D}}^{n-1} \cong \partial^{\alpha} \vec{D}^{n} & \longrightarrow \overrightarrow{\bar{D}}^{n} \\
\quad \overline{\left(t_{n-1}, \ldots t_{1}\right)} & \longmapsto \frac{\left(b, t_{n-1}, \ldots, t_{1}\right)}{},
\end{aligned}
$$

Realisation (work in progress...)

Directed geometric realisation
When defining a geometric realisation of preheaves on a category S, we can realise each shape $s \in S_{0}$
 u-simplex
\leadsto we need a topological interpretation of face maps

In the case of constructible complexes, the face maps are wore complicated; they are "partial":

We need to ahead have an interpretation of $(n-1)$-dimensional $C D C_{p x}$'s in order to understand how $(n-1)$-dimensional abous are included in n-dimensional ones.

Directed geometric realisation

We initialise the construction:

$$
\left(\begin{array}{rl}
D_{p}: \underline{P} & \longmapsto C A t o m \\
x & \longmapsto C(x) .
\end{array}\right)
$$

$$
U \stackrel{R}{\longmapsto} \vec{D}^{0}=\{x\} ;
$$

$$
P \longmapsto|P|:=\underset{P}{\operatorname{colim}_{P}}\left(R \circ D_{p}\right)
$$

a 0 -nod.
a 0 -dimensional

$$
C D C_{p x}
$$

If we know how to realise $(n-1)$-atoms (and thereloy $(n-1)-\operatorname{dim}^{\prime} l\left(D C_{p x} x^{\prime}\right)$, we extend:

Now, if P is an u-dimensional $C D C_{p x}$, again

$$
|P|:=\operatorname{cotim}\left(R \circ D_{p}\right)
$$

n-atom

J! $\alpha \in\{-1+\}$ sit.

We need to show that $|U| \cong \vec{D}^{w}$ whenever U is a constructible x-molecule.

Thank You

Coming soon:

Algebraic Rewriting Seminar

- Organisers:
- Benjamin Dupont (bdupont@math.univ-lyon1.fr)
- Cyrille Chenavier (cyrille.chenavier@unilim.fr)
- Cameron Calk (cameron.calk@lix.polytechnique.fr)
- Modalities:
- Thursdays $16 \mathrm{~h}-18 \mathrm{~h}$ (bi)weekly.
- Seminar held virtually.
- Expected to start in March
- Feel free to contact us with any questions or comments.

See you soon!

Graded posets

N.B. All results and definitions in this section are from recent works by Amar Hadzihasanovic. Let P be a poset.

- Let $x, y \in P$. We say that y covers x if

$$
x<y \quad \text { and } \quad \forall y^{\prime} \in P, x<y^{\prime} \leq y \Rightarrow y^{\prime}=y
$$

- The Hasse diagram $\mathcal{H} P$ of P is the directed graph with

$$
\mathcal{H} P_{0}=P \quad \mathcal{H} P_{1}=\{(y, x) \mid y \text { covers } x\}
$$

- Denote by P_{\perp} the poset P with a least element \perp added.
- P is graded if for every x, all paths from x to \perp have the same length l_{x}. We set

$$
\operatorname{dim}(x):=l_{x}-1
$$

and $P^{(n)}:=\{x \in P \mid \operatorname{dim}(x)=n\}$.

Orientation, closures and borders

Let P be a graded poset.

- An orientation of P is a map

$$
o: \mathcal{H} P_{1} \longrightarrow\{-,+\}
$$

In this case we say that P is an oriented graded poset.

- Recall that for $U \subseteq P$, the closure of U is defined as

$$
c l(U)=\{x \in P \mid \exists z \in U, x \leq z\}
$$

and U is closed if $U=\operatorname{cl}(U)$.

- We set $\operatorname{dim} U=\max \{\operatorname{dim}(x) \mid x \in U\}$ and $\operatorname{dim}(\emptyset)=-1$.
- A closed n-dimensional subset U is pure if $U=\operatorname{cl}\left(U^{(n)}\right)$.

Orientation, closures and borders

Let P be a graded poset.

- An orientation of P is a map

$$
o: \mathcal{H} P_{1} \longrightarrow\{-,+\}
$$

In this case we say that P is an oriented graded poset.

- Recall that for $U \subseteq P$, the closure of U is defined as

$$
c l(U)=\{x \in P \mid \exists z \in U, x \leq z\}
$$

and U is closed if $U=\operatorname{cl}(U)$.

- We set $\operatorname{dim} U=\max \{\operatorname{dim}(x) \mid x \in U\}$ and $\operatorname{dim}(\emptyset)=-1$.
- Closed subsets inherit gradedness and orientation from P. For a closed n-dimensional subset U, we set

$$
\begin{aligned}
\Delta^{\alpha} U & :=\left\{x \in U^{(n-1)} \mid \forall y \in U, \text { if } y \text { covers } x, \text { then } o(y, x)=\alpha\right\} \\
\partial^{\alpha} U & :=\operatorname{cl}\left(\Delta^{\alpha} U\right) \cup\{x \in U \mid \forall y \in U, x \leq y \Rightarrow \operatorname{dim}(y)<n\} \\
\Delta U & :=\Delta^{+} U \cup \Delta^{-} U, \quad \partial U:=\partial^{+} U \cup \partial^{-} U .
\end{aligned}
$$

- $\partial_{n}^{-} U$ (resp. $\left.\partial_{n}^{+} U\right)$ is the input (resp. output) boundary of U.

Orientation, closures and borders

Let P be a graded poset.

- An orientation of P is a map

$$
o: \mathcal{H} P_{1} \longrightarrow\{-,+\} .
$$

In this case we say that P is an oriented graded poset.

- Recall that for $U \subseteq P$, the closure of U is defined as

$$
c l(U)=\{x \in P \mid \exists z \in U, x \leq z\}
$$

and U is closed if $U=\operatorname{cl}(U)$.

- We set $\operatorname{dim} U=\max \{\operatorname{dim}(x) \mid x \in U\}$ and $\operatorname{dim}(\emptyset)=-1$.
- An inclusion of oriented thin posets is a closed embedding of posets that is compatible with the orientation maps. We denote the category of oriented graded posets and inclusions by $\mathbf{o g P o s}{ }_{i n}$

Oriented thin posets

Let P be an oriented graded poset.

- A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H} P$ have the same length $\operatorname{dim}(y)-\operatorname{dim}(x)$. This is the length of the interval $[x, y]$.

Oriented thin posets

Let P be an oriented graded poset.

- A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H} P$ have the same length $\operatorname{dim}(y)-\operatorname{dim}(x)$. This is the length of the interval $[x, y]$.
- P is thin if any interval $[x, y]$ of length 2 in P_{\perp} contains exactly 4 elements:

Oriented thin posets

Let P be an oriented graded poset.

- A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H} P$ have the same length $\operatorname{dim}(y)-\operatorname{dim}(x)$. This is the length of the interval $[x, y]$.
- If P is oriented, we extend o to P_{\perp} by setting $o(x, \perp)=+$ for all minimal $x \in P$.
- P is an oriented thin poset if for any interval $[x, y]$ of length 2 we have thinness:

and additionally $\alpha_{1} \beta_{1}=-\alpha_{2} \beta_{2}$.

Oriented thin posets

Let P be an oriented graded poset.

- A consequence of gradedness is that for $x \leq y$, all paths from x to y in $\mathcal{H} P$ have the same length $\operatorname{dim}(y)-\operatorname{dim}(x)$. This is the length of the interval $[x, y]$.
- If P is oriented, we extend o to P_{\perp} by setting $o(x, \perp)=+$ for all minimal $x \in P$.
- P is an oriented thin poset if for any interval $[x, y]$ of length 2 we have thinness:

and additionally $\alpha_{1} \beta_{1}=-\alpha_{2} \beta_{2}$.
- Examples:

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l}{ }_{n} P, \sqsubset\right)$ of n-dimensional closed subsets of P. These are called constructible n-molecules.

- C Mol $_{0} P:=\{\{x\} \mid \operatorname{dim}(x)=0\}$ with the discrete order.

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l}{ }_{n} P, \sqsubset\right)$ of n-dimensional closed subsets of P. These are called constructible n-molecules.

- $C \operatorname{Mol}_{0} P:=\{\{x\} \mid \operatorname{dim}(x)=0\}$ with the discrete order.
- For a pure n-dimensional subset U, we have $U \in C \mathcal{M o l}{ }_{n} P$ if $\partial^{+} U, \partial^{-} U \in C \mathcal{M o l}{ }_{n-1} P$ and either
- U has a greatest element, or
- $U=U_{1} \cup U_{2}$ such that
- U_{1}, U_{2} partition the maximal elements of U,
- $U_{1} \cap U_{2}=\partial^{+} U_{1} \cap \partial^{-} U_{2} \in \operatorname{CMol}_{n-1} P$, and
- $\partial^{-} U_{1} \sqsubseteq \partial^{-} U, \partial^{+} U_{2} \sqsubseteq \partial^{+} U, U_{1} \cap U_{2} \sqsubseteq \partial^{+} U$, and $U_{1} \cap U_{2} \sqsubseteq \partial^{-} U$.
- A constructible molecule with a largest element is called an atom.

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l}{ }_{n} P, \sqsubset\right)$ of n-dimensional closed subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$

Constructible directed complexes

Let P be an oriented thin poset. For each $n \in \mathbb{N}$, we single out a a poset $\left(C \mathcal{M o l}{ }_{n} P, \sqsubset\right)$ of n-dimensional closed subsets of P. These are called constructible n-molecules.

- Constructible n-molecules are globular in the sense that

$$
\partial^{\alpha}\left(\partial^{+} U\right)=\partial^{\alpha}\left(\partial^{-} U\right) \quad \text { and } \quad \partial^{+} U \cap \partial^{-} U=\partial\left(\partial^{\alpha} U\right)
$$

- An oriented thin poset P is called a constructible directed complex if $\operatorname{cl}(x)$ is a constructible atom for all $x \in P$.
- The full subcategory of $\mathbf{0 g} \mathbf{P o s}_{i n}$ consisting of constructible directed complexes is denoted by CDCpx.

