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Motivation: generalisation of theorem statements

• Often, theorems are stated for one “typical” programming language.
• Goal: provide high-level tools for stating them for all suitable

languages and models.
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State of the art

• Formats: Tyft/tyxt, GSOS, PATH,…
• Bialgebraic semantics (Turi and Plotkin ’97).

Functional languages only starting to be investigated (Peressotti ’17).
• Reduction monads (Ahrens et al. ’20).
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Main contribution

1. Abstract setting for specifying operational semantics from signatures.
2. Abstract analogue of Abramsky’s applicative bisimilarity in cbn

𝜆-calculus, called substitution-closed bisimilarity.
3. A semantic format for congruence of substitution-closed bisimilarity:

Main theorem
If the signature complies with the format, then
substitution-closed bisimilarity is a congruence.

Proof: abstract analogue of Howe’s method.
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This talk

Sketch main ideas on one example, big-step, cbn 𝜆-calculus.
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Call-by-name 𝜆-calculus

Slightly non-standard presentation.

𝜆𝑥.𝑒 ⇓ 𝑒
𝑒1 ⇓ 𝑒3 𝑒3[𝑒2] ⇓ 𝑒4

𝑒1 𝑒2 ⇓ 𝑒4

Typing: ⇓ ⊆ closed terms × terms with 1 free variable.
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Syntactic graphs

Objects of interest:
• graphs with typed vertices,
• types = natural numbers, morally numbers of potential free variables,
• sources are closed,
• targets have one potential free variable,
• vertices support the operations of untyped 𝜆-calculus, including

substitution.
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Syntactic graphs

Definition
A syntactic graph consists of
• a model 𝑋0 of syntax (𝑋0(𝑛) means 𝑛 potential free variables),

including

𝜆𝑛 ∶ 𝑋0(𝑛 + 1) → 𝑋0(𝑛) 𝑎𝑝𝑝𝑛 ∶ 𝑋0(𝑛)2 → 𝑋0(𝑛)

𝑠𝑢𝑏𝑠𝑡𝑝,𝑛 ∶ 𝑋0(𝑝) × 𝑋0(𝑛)𝑝 → 𝑋0(𝑛),

• a set 𝑋⇓ of edges, and
• a source and target map 𝑋⇓ → 𝑋0(0) × 𝑋0(1).

They form a category Σ0 -Gph.

Notation: 𝑋⇓ → Δ(𝑋0)
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Transition rules

A syntactic graph is a model of the rule

𝜆𝑥.𝑒 ⇓ 𝑒

when it is equipped with

𝑋0(1) 𝑋⇓

Δ(𝑋0).
𝑒↦(𝜆1(𝑒),𝑒)

Intuition
For all potential parameters, there is a transition with expected
source and target.
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Transition rules
A syntactic graph is a model of the rule

𝑟1
𝑒1 ⇓ 𝑒3

𝑟2
𝑒3[𝑒2] ⇓ 𝑒4

𝑒1 𝑒2 ⇓ 𝑒4
·

when it is equipped with

𝐴𝛽(𝑋) 𝑋⇓

Δ(𝑋0)
(𝑟1,𝑒2,𝑟2)↦(𝑎𝑝𝑝0(𝑠(𝑟1),𝑒2),𝑡(𝑟2))

where 𝐴𝛽(𝑋) = {(𝑟1, 𝑒2, 𝑟2) | 𝑡(𝑟1)[𝑒2] = 𝑠(𝑟2)}.
Intuition
For all potential parameters, there is a transition with expected
source and target.
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Models

Definition
A model is a syntactic graph that is a model of both rules.

Informal Proposition
The initial model is a proof-relevant variant of the standard,
syntactic graph.
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Main result

Sketch: one defines
• substitution-closed relations,
• bisimulation,
• substitution-closed bisimilarity.

Theorem
Substitution-closed bisimilarity is a congruence.

Focus today: what makes the general theorem applicable to cbn 𝜆.
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Representable arities

Main steps:
• bisimulation by lifting and
• representable arities.
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Bisimulation by lifting I
“Small” syntactic graphs:
• ℒ (𝐲0):

• vertices generated from one closed constant, say 𝑘0,
• no transition.

• ℒ (𝐲⇓):
• vertices generated from

𝑘′0 ∈ ℒ (𝐲⇓)(0) and 𝑘′1 ∈ ℒ (𝐲⇓)(1),

• one transition 𝑟 ∶ 𝑘0 ⇓ 𝑘1(𝑥).

Proposition (≈ Yoneda)
• Σ0 -Gph(ℒ (𝐲0), 𝑋) ≅ 𝑋0(0).
• Σ0 -Gph(ℒ (𝐲⇓), 𝑋) ≅ 𝑋⇓.

• ℒ (𝐲0)
ℒ(𝐲𝑠)−−−−−→ ℒ(𝐲⇓)

𝑒
−→ 𝑋 corresponds to 𝑠(𝑒).
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Bisimulation by lifting II
Definition
𝑓 ∶ 𝑋 → 𝑌 is a functional bisimulation iff

ℒ(𝐲0) 𝑋

ℒ (𝐲⇓) 𝑌

𝑥

𝐲𝑠

𝑒′

𝑒 𝑓

𝑥 𝑓 (𝑥)

𝑥′ 𝑦′.
𝑒 𝑒′ (for all / exists)

Notation
𝑓 ∈ {ℒ (𝐲𝑠)}⧄, generalises to 𝕁⧄.
ℒ(𝐲𝑠) ∈ ⧄{𝑓 }, generalises to ⧄𝕂.

Definition
• fibration: {ℒ (𝐲𝑠)}⧄.
• cofibration: ⧄({ℒ (𝐲𝑠)}⧄).
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Representable operation arities

By example: 𝑒1 𝑒2, head operation of
𝑒1 ⇓ 𝑒3 𝑒3[𝑒2] ⇓ 𝑒4

𝑒1 𝑒2 ⇓ 𝑒4
·

Goal
Find 𝐸𝑎𝑝𝑝 such that 𝑋(0)2 ≅ Σ0 -Gph(𝐸𝑎𝑝𝑝, 𝑋), naturally in 𝑋.

Solution (merely saying that application has 2 arguments)
𝐸𝑎𝑝𝑝 = ℒ (𝐲0) +ℒ (𝐲0).

By 𝑋(0)2 ≅ Σ0 -Gph(ℒ (𝐲0), 𝑋)2
≅ Σ0 -Gph(ℒ (𝐲0) +ℒ (𝐲0), 𝑋).

Remark: ℒ preserves coproducts, so ℒ(𝐲0) +ℒ (𝐲0) ≅ ℒ (𝐲0 + 𝐲0), etc.
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Representable rule arities

By example:

𝑟1
𝑒1 ⇓ 𝑒3

𝑟2
𝑒3[𝑒2] ⇓ 𝑒4

𝑒1 𝑒2 ⇓ 𝑒4
·

Goal
Find 𝐸𝛽 such that 𝐴𝛽(𝑋) ≅ Σ0 -Gph(𝐸𝛽, 𝑋), naturally in 𝑋.

ℒ(𝐲0) ℒ (𝐲⇓)

ℒ (𝐲⇓ + 𝐲0) 𝐸𝛽

𝑋

ℒ(𝐲𝑠)

𝑡(𝑘⇓)[𝑘0]

[𝑟1,𝑒2]

𝑟2

Indeed, 𝐴𝛽(𝑋) ≅ cocones to 𝑋
≅ Σ0 -Gph(𝐸𝛽, 𝑋).
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Semantic format
Proposition
Each rule yields a boundary morphism

head operation arity → rule arity.

ℒ(𝐲0) ℒ (𝐲⇓)

ℒ (𝐲0 + 𝐲0) ℒ (𝐲⇓ + 𝐲0) 𝐸𝛽

Condition
Each (head operation arity → rule arity) is a cofibration.

For
𝑒1 ⇓ 𝑒3 𝑒3[𝑒2] ⇓ 𝑒4

𝑒1 𝑒2 ⇓ 𝑒4
: stability under pushouts and composition.
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Conclusion

Semantic format for congruence of substitution-closed bisimilarity
Representable arities should form cofibrations.

• Shown here: example of cbn 𝜆.
• In the paper: general framework + more examples.

Short-term future work
Languages with terms as Labels.
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