A categorical framework for congruence of applicative bisimilarity in higher-order languages

Tom Hirschowitz¹ Ambroise Lafont²

¹Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA Chambéry, France

²UNSW, Sydney

Journée LHC February 2021

Based on previous work with Peio Borthelle.

Motivation: generalisation of theorem statements

- Often, theorems are stated for one "typical" programming language.
- Goal: provide high-level tools for stating them for all suitable languages and models.

State of the art

- Formats: Tyft/tyxt, GSOS, PATH,...
- Bialgebraic semantics (Turi and Plotkin '97).
 Functional languages only starting to be investigated (Peressotti '17).
- Reduction monads (Ahrens et al. '20).

Main contribution

- 1. Abstract setting for specifying operational semantics from signatures.
- 2. Abstract analogue of Abramsky's applicative bisimilarity in cbn $\lambda\text{-calculus, called substitution-closed bisimilarity.}$
- 3. A semantic format for congruence of substitution-closed bisimilarity:

Main theorem

If the signature complies with the format, then substitution-closed bisimilarity is a congruence.

Proof: abstract analogue of Howe's method.

This talk

Sketch main ideas on one example, big-step, cbn λ -calculus.

Call-by-name λ -calculus

Slightly non-standard presentation.

$$\frac{e_1 \Downarrow e_3 \qquad e_3[e_2] \Downarrow e_4}{e_1 \ e_2 \Downarrow e_4}$$

Typing: \Downarrow \subseteq closed terms \times terms with 1 free variable.

Syntactic graphs

Objects of interest:

- graphs with typed vertices,
- types = natural numbers, morally numbers of potential free variables,
- sources are closed,
- targets have one potential free variable,
- vertices support the operations of untyped $\lambda\text{-calculus, including substitution.}$

Syntactic graphs

Definition

A syntactic graph consists of

• a model X_0 of syntax ($X_0(n)$ means n potential free variables), including

$$\lambda_n : X_0(n+1) \to X_0(n) \qquad app_n : X_0(n)^2 \to X_0(n)$$

$$subst_{p,n}: X_0(p) \times X_0(n)^p \to X_0(n),$$

- a set X_{\Downarrow} of edges, and
- a source and target map $X_{\downarrow} \to X_0(0) \times X_0(1)$.

They form a category Σ_0 -**Gph**.

Notation: $X_{\downarrow} \rightarrow \Delta(X_0)$

Transition rules

A syntactic graph is a model of the rule

 $\lambda x.e \Downarrow e$

when it is equipped with

Intuition

For all potential parameters, there is a transition with expected source and target.

Transition rules

A syntactic graph is a model of the rule

$$\frac{\begin{array}{c}r_{1}\\\hline e_{1} \Downarrow e_{3}\end{array}}{e_{1} e_{2} \downarrow e_{4}} \\ \hline \begin{array}{c}r_{2}\\\hline e_{3}[e_{2}] \Downarrow e_{4}\end{array}$$

.

when it is equipped with

where $A_{\beta}(X) = \{(r_1, e_2, r_2) \mid t(r_1)[e_2] = s(r_2)\}.$

Intuition

For all potential parameters, there is a transition with expected source and target.

Hirschowitz and Lafont

Models

Definition

A model is a syntactic graph that is a model of both rules.

Informal Proposition

The initial model is a proof-relevant variant of the standard, syntactic graph.

Main result

Sketch: one defines

- substitution-closed relations,
- bisimulation,
- substitution-closed bisimilarity.

Theorem

Substitution-closed bisimilarity is a congruence.

Focus today: what makes the general theorem applicable to cbn $\boldsymbol{\lambda}.$

Representable arities

Main steps:

- bisimulation by lifting and
- representable arities.

Bisimulation by lifting I

- "Small" syntactic graphs:
 - $\mathscr{L}(\mathbf{y}_0)$:
 - vertices generated from one closed constant, say k₀,
 - no transition.
 - $\mathscr{L}(\mathbf{y}_{\Downarrow})$:
 - vertices generated from

$$k'_0 \in \mathscr{L}(\mathbf{y}_{\Downarrow})(0)$$
 and $k'_1 \in \mathscr{L}(\mathbf{y}_{\Downarrow})(1),$

• one transition $r: k_0 \Downarrow k_1(x)$.

Proposition (\approx Yoneda)

• Σ_0 -**Gph**($\mathscr{L}(\mathbf{y}_0), X) \cong X_0(0).$

•
$$\Sigma_0$$
-**Gph**($\mathscr{L}(\mathbf{y}_{\Downarrow}), X) \cong X_{\Downarrow}$.

•
$$\mathscr{L}(\mathbf{y}_0) \xrightarrow{\mathscr{L}(\mathbf{y}_s)} \mathscr{L}(\mathbf{y}_{\downarrow}) \xrightarrow{e} X$$
 corresponds to $s(e)$.

Bisimulation by lifting II

Notation

$$f \in \{\mathscr{L}(\mathbf{y}_s)\}^{\boxtimes}, \text{ generalises to } \mathbb{J}^{\boxtimes}.$$

$$\mathscr{L}(\mathbf{y}_s) \in \mathbb{Z}\{f\}, \text{ generalises to }^{\boxtimes}\mathbb{K}.$$

Definition

- fibration: $\{\mathscr{L}(\mathbf{y}_s)\}^{\bowtie}$.
- cofibration: $\[\square (\{ \mathscr{L}(\mathbf{y}_s)\} \] \]$.

Representable operation arities

By example: $e_1 \ e_2$, head operation of

$$\frac{e_1 \Downarrow e_3 \qquad e_3[e_2] \Downarrow e_4}{e_1 \ e_2 \Downarrow e_4}$$

Goal

Find E_{app} such that $X(0)^2 \cong \Sigma_0 \operatorname{-\mathbf{Gph}}(E_{app}, X)$, naturally in X.

Solution (merely saying that application has 2 arguments)

$$E_{app} = \mathcal{L}(\mathbf{y}_0) + \mathcal{L}(\mathbf{y}_0).$$

By
$$X(0)^2 \cong \Sigma_0 - \mathbf{Gph}(\mathscr{L}(\mathbf{y}_0), X)^2$$

 $\cong \Sigma_0 - \mathbf{Gph}(\mathscr{L}(\mathbf{y}_0) + \mathscr{L}(\mathbf{y}_0), X).$
Remark: \mathscr{L} preserves coproducts, so $\mathscr{L}(\mathbf{y}_0) + \mathscr{L}(\mathbf{y}_0) \cong \mathscr{L}(\mathbf{y}_0 + \mathbf{y}_0)$, etc.

Representable rule arities

$$\frac{\frac{r_1}{e_1 \Downarrow e_3} \quad \frac{r_2}{e_3[e_2] \Downarrow e_4}}{e_1 \ e_2 \Downarrow e_4} \ .$$

By example:

Goal

Find E_{β} such that $A_{\beta}(X) \cong \Sigma_0 \operatorname{-\mathbf{Gph}}(E_{\beta}, X)$, naturally in X.

Indeed, $A_{\beta}(X) \cong$ cocones to X $\cong \Sigma_0 \operatorname{-\mathbf{Gph}}(E_{\beta}, X).$

Semantic format

Proposition Each rule yields a boundary morphism

head operation arity \rightarrow rule arity.

Condition

Each (head operation arity \rightarrow rule arity) is a cofibration.

For
$$\frac{e_1 \Downarrow e_3}{e_1 e_2 \Downarrow e_4}$$
: stability under pushouts and composition.

Hirschowitz and Lafon

Congruence of applicative bisimilarity

Conclusion

Semantic format for congruence of substitution-closed bisimilarity

Representable arities should form cofibrations.

- Shown here: example of cbn λ .
- In the paper: general framework + more examples.

Short-term future work

Languages with terms as Labels.