A categorical framework for congruence of applicative bisimilarity in higher-order languages

Tom Hirschowitz ${ }^{1}$ Ambroise Lafont ${ }^{2}$

${ }^{1}$ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA
Chambéry, France
${ }^{2}$ UNSW, Sydney
Journée LHC
February 2021

Based on previous work with Peio Borthelle.

Motivation: generalisation of theorem statements

- Often, theorems are stated for one "typical" programming language.
- Goal: provide high-level tools for stating them for all suitable languages and models.

State of the art

- Formats: Tyft/tyxt, GSOS, PATH,...
- Bialgebraic semantics (Turi and Plotkin '97).

Functional languages only starting to be investigated (Peressotti '17).

- Reduction monads (Ahrens et al. '20).

Main contribution

1. Abstract setting for specifying operational semantics from signatures.
2. Abstract analogue of Abramsky's applicative bisimilarity in cbn λ-calculus, called substitution-closed bisimilarity.
3. A semantic format for congruence of substitution-closed bisimilarity:

Main theorem

If the signature complies with the format, then substitution-closed bisimilarity is a congruence.

Proof: abstract analogue of Howe's method.

This talk

Sketch main ideas on one example, big-step, cbn λ-calculus.

Call-by-name λ-calculus

Slightly non-standard presentation.

$$
\overline{\lambda x . e \Downarrow e}
$$

$$
\frac{e_{1} \Downarrow e_{3} \quad e_{3}\left[e_{2}\right] \Downarrow e_{4}}{e_{1} e_{2} \Downarrow e_{4}}
$$

Syntactic graphs

Objects of interest:

- graphs with typed vertices,
- types $=$ natural numbers, morally numbers of potential free variables,
- sources are closed,
- targets have one potential free variable,
- vertices support the operations of untyped λ-calculus, including substitution.

Syntactic graphs

Definition

A syntactic graph consists of

- a model X_{0} of syntax $\left(X_{0}(n)\right.$ means n potential free variables $)$, including

$$
\begin{gathered}
\lambda_{n}: X_{0}(n+1) \rightarrow X_{0}(n) \quad \text { app }_{n}: X_{0}(n)^{2} \rightarrow X_{0}(n) \\
\text { subst }_{p, n}: X_{0}(p) \times X_{0}(n)^{p} \rightarrow X_{0}(n),
\end{gathered}
$$

- a set X_{\Downarrow} of edges, and
- a source and target map $X_{\Downarrow} \rightarrow X_{0}(0) \times X_{0}(1)$.

They form a category Σ_{0}-Gph.
Notation: $X_{\Downarrow} \rightarrow \Delta\left(X_{0}\right)$

Transition rules

A syntactic graph is a model of the rule

$$
\overline{\lambda x . e \Downarrow e}
$$

when it is equipped with

Intuition

For all potential parameters, there is a transition with expected source and target.

Transition rules

A syntactic graph is a model of the rule

$$
\frac{\frac{r_{1}}{e_{1} \Downarrow e_{3}} \frac{r_{2}}{e_{3}\left[e_{2}\right] \Downarrow e_{4}}}{e_{1} e_{2} \Downarrow e_{4}} .
$$

when it is equipped with

where $A_{\beta}(X)=\left\{\left(r_{1}, e_{2}, r_{2}\right) \mid t\left(r_{1}\right)\left[e_{2}\right]=s\left(r_{2}\right)\right\}$.

Intuition

For all potential parameters, there is a transition with expected source and target.

Models

Definition

A model is a syntactic graph that is a model of both rules.

Informal Proposition

The initial model is a proof-relevant variant of the standard, syntactic graph.

Main result

Sketch: one defines

- substitution-closed relations,
- bisimulation,
- substitution-closed bisimilarity.

Theorem

Substitution-closed bisimilarity is a congruence.
Focus today: what makes the general theorem applicable to $\mathrm{cbn} \lambda$.

Representable arities

Main steps:

- bisimulation by lifting and
- representable arities.

Bisimulation by lifting I

"Small" syntactic graphs:

- $\mathscr{L}\left(\mathbf{y}_{0}\right)$:
- vertices generated from one closed constant, say k_{0},
- no transition.
- $\mathscr{L}\left(\mathbf{y}_{\Downarrow}\right)$:
- vertices generated from

$$
k_{0}^{\prime} \in \mathscr{L}\left(\mathbf{y}_{\Downarrow}\right)(0) \quad \text { and } \quad k_{1}^{\prime} \in \mathscr{L}\left(\mathbf{y}_{\Downarrow}\right)(1) \text {, }
$$

- one transition $r: k_{0} \Downarrow k_{1}(x)$.

Proposition (\approx Yoneda)

- $\Sigma_{0}-\operatorname{Gph}\left(\mathscr{L}\left(\mathbf{y}_{0}\right), X\right) \cong X_{0}(0)$.
- $\Sigma_{0}-\operatorname{Gph}\left(\mathscr{L}\left(\mathbf{y}_{\Downarrow}\right), X\right) \cong X_{\Downarrow}$.
- $\mathscr{L}\left(\mathbf{y}_{0}\right) \xrightarrow{\mathscr{L}\left(\mathbf{y}_{s}\right)} \mathscr{L}\left(\mathbf{y}_{\Downarrow}\right) \xrightarrow{e} X$ corresponds to $s(e)$.

Bisimulation by lifting II

Definition

$f: X \rightarrow Y$ is a functional bisimulation iff

$$
x \longmapsto f(x)
$$

(for all / exists)

Notation

$f \in\left\{\mathscr{L}\left(\mathbf{y}_{s}\right)\right\}^{\boxtimes}$, generalises to \mathbb{J}^{\boxtimes}.
$\mathscr{L}\left(\mathbf{y}_{s}\right) \in{ }^{\boxtimes}\{f\}$, generalises to ${ }^{\square} \mathbb{K}$.

Definition

- fibration: $\left\{\mathscr{L}\left(\mathbf{y}_{s}\right)\right\}^{\boxtimes}$.
- cofibration: ${ }^{\boxtimes}\left(\left\{\mathscr{L}\left(\mathbf{y}_{s}\right)\right\}^{\boxtimes}\right)$.

Representable operation arities

By example: $e_{1} e_{2}$, head operation of $\quad \frac{e_{1} \Downarrow e_{3} e_{3}\left[e_{2}\right] \Downarrow e_{4}}{e_{1} e_{2} \Downarrow e_{4}}$.

Goal

Find $E_{\text {app }}$ such that $X(0)^{2} \cong \Sigma_{0}-\mathbf{G p h}\left(E_{\text {app }}, X\right)$, naturally in X.

Solution (merely saying that application has 2 arguments)

$$
E_{a p p}=\mathscr{L}\left(\mathbf{y}_{0}\right)+\mathscr{L}\left(\mathbf{y}_{0}\right)
$$

By $X(0)^{2} \cong \Sigma_{0}-\operatorname{Gph}\left(\mathscr{L}\left(\mathbf{y}_{0}\right), X\right)^{2}$

$$
\cong \quad \Sigma_{0}-\mathbf{G p h}\left(\mathscr{L}\left(\mathbf{y}_{0}\right)+\mathscr{L}\left(\mathbf{y}_{0}\right), X\right) .
$$

Remark: \mathscr{L} preserves coproducts, so $\mathscr{L}\left(\mathbf{y}_{0}\right)+\mathscr{L}\left(\mathbf{y}_{0}\right) \cong \mathscr{L}\left(\mathbf{y}_{0}+\mathbf{y}_{0}\right)$, etc.

Representable rule arities

By example:

$$
\frac{\frac{r_{1}}{e_{1} \Downarrow e_{3}} \frac{r_{2}}{e_{3}\left[e_{2}\right] \Downarrow e_{4}}}{e_{1} e_{2} \Downarrow e_{4}} .
$$

Goal

Find E_{β} such that $A_{\beta}(X) \cong \Sigma_{0}-\mathbf{G p h}\left(E_{\beta}, X\right)$, naturally in X.

Indeed, $A_{\beta}(X) \cong$ cocones to X

$$
\cong \quad \Sigma_{0}-\operatorname{Gph}\left(E_{\beta}, X\right)
$$

Semantic format

Proposition

Each rule yields a boundary morphism

$$
\text { head operation arity } \quad \rightarrow \quad \text { rule arity. }
$$

$$
\begin{aligned}
& \mathscr{L}\left(\mathbf{y}_{0}\right) \longrightarrow \mathscr{L}\left(\mathbf{y}_{\Downarrow}\right) \\
& \downarrow \Gamma \downarrow \\
& \mathscr{L}\left(\mathbf{y}_{0}+\mathbf{y}_{0}\right) \longrightarrow \mathscr{L}\left(\mathbf{y}_{\Downarrow}+\mathbf{y}_{0}\right) \longrightarrow E_{\beta}
\end{aligned}
$$

Condition

Each (head operation arity \rightarrow rule arity) is a cofibration.
For $\frac{e_{1} \Downarrow e_{3} \quad e_{3}\left[e_{2}\right] \Downarrow e_{4}}{e_{1} e_{2} \Downarrow e_{4}}$: stability under pushouts and composition.

Conclusion

Semantic format for congruence of substitution-closed bisimilarity

Representable arities should form cofibrations.

- Shown here: example of cbn λ.
- In the paper: general framework + more examples.

```
Short-term future work
Languages with terms as Labels.
```

