Ordered Models of CIC
Kenji Maillard

Inria Nantes, team Gallinette

j.w.w.

Bertrand

GdT LHC

Friday the 5th of February, 2021

What is CIC ?

CIC: logic \& programs

CIC: Calculus of (Co)Inductive Constructions
A rich logical system \& an expressive programming language

- Inductive and coinductive types with pattern-matching,
- functions ($a: A$) $\rightarrow B$, (well-founded) fixpoints,
- Dependent types
$\vdash A$ type $\quad x: A \vdash B$ type $\quad n: \mathbb{N} \vdash$ vect $A n$ type

CIC: logic \& programs

CIC: Calculus of (Co)Inductive Constructions
A rich logical system \& an expressive programming language

- Inductive and coinductive types with pattern-matching,
- functions ($a: A$) $\rightarrow B$, (well-founded) fixpoints,
- Dependent types internalized with Universes \mathbb{U}_{i}
$\vdash A: \mathbb{U}_{i}$
$\vdash A$ type

$$
\vdash \operatorname{vect} A:\left(A: \mathbb{U}_{i}\right)(n: \mathbb{N}) \rightarrow \mathbb{U}_{i} \quad \vdash \mathbb{U}_{i}: \mathbb{U}_{i+1}
$$

CIC: logic \& programs

CIC: Calculus of (Co)Inductive Constructions A rich logical system \& an expressive programming language

- Inductive and coinductive types with pattern-matching,
- functions $(a: A) \rightarrow B$, (well-founded) fixpoints,
- Dependent types internalized with Universes \mathbb{U}_{i}
$\vdash A: \mathbb{U}_{i}$
$\vdash A$ type

$$
\vdash \operatorname{vect} A:\left(A: \mathbb{U}_{i}\right)(n: \mathbb{N}) \rightarrow \mathbb{U}_{i} \quad \vdash \mathbb{U}_{i}: \mathbb{U}_{i+1}
$$

Idealized metatheory of various proofs assistants:

\#Idris

Computations

Conversion

$$
\frac{\vdash 1+2 \equiv 3: \mathbb{N}}{\vdash \operatorname{vect} A(1+2) \equiv \operatorname{vect} A 3} \quad \frac{\vdash t: A \quad \vdash A \equiv B}{\vdash t: B}
$$

Trade-offs betweeen decidability and expressivity

Trivial conversion
$\beta \delta \iota \zeta \eta$
Provable equality

Checking proofs
vs
Writing proofs

Models of CIC For Fun And Profit

Motivation

Add new proof principles:

- Uniqueness of identity proofs (UIP)
- Function extensionality (funext)
- Quotients
- Univalence principle
- Markov principle
- Parametricity

Account for existing programming features:

- Exceptions
- Access to a global environment
- Subtyping
- Dynamic type

Syntactic Models

Models of CIC in CIC:

- Defined inductively on the syntax of terms/types

$$
\llbracket-\rrbracket: \text { Type } \rightarrow \text { Type } \quad[-]: \text { Term } \rightarrow \text { Term }
$$

- Preserving conversion (no coherence hell)

$$
\ulcorner\vdash A \equiv B \quad \Longrightarrow \quad \llbracket \Gamma \rrbracket \vdash \llbracket A \rrbracket \equiv \llbracket B \rrbracket
$$

Main goal/theorem:

$$
\Gamma \vdash t: A \quad \Longrightarrow \quad \llbracket \Gamma \rrbracket \vdash[t]: \llbracket A \rrbracket
$$

Syntactic Models

Models of CIC in CIC:

- Defined inductively on the syntax of terms/types

$$
\llbracket-\rrbracket: \text { Type } \rightarrow \text { Type } \quad[-]: \text { Term } \rightarrow \text { Term }
$$

- Preserving conversion (no coherence hell)

$$
\ulcorner\vdash A \equiv B \quad \Longrightarrow \quad \llbracket\ulcorner\rrbracket \vdash \llbracket A \rrbracket \equiv \llbracket B \rrbracket
$$

Why syntactic models ?

- Useful to prototype extensions of CIC
- Proposes extensions more amenable to implementations
- Help designing reductions/conversion rules

Examples from the literature

Reflexive graphs model: external parametricity [Atkey et al.] Types equipped with a reflexive relation

Setoid model: UIP, funext
Types equipped with an irrelevant equivalence relation
Exceptional model: Exceptions
Pointed types
Reader model: Reading and setting a global cell
[Pédrot et al.]

Presheaves on a set of states

Syntactic Models: A Recipe

$$
\mathrm{CIC} \longrightarrow \mathrm{CIC}
$$

Crucial steps

1. Give the structure of types, type families and terms

Syntactic Models: A Recipe

$$
\mathrm{CIC} \longrightarrow \mathrm{CIC}
$$

Crucial steps

1. Give the structure of types, type families and terms
2. Translate type constructors $(\mathbb{N}, \Pi) \&$ universes $\left[\mathbb{U}_{i}\right]: \llbracket \mathbb{U}_{i+1} \rrbracket$

Syntactic Models: A Recipe

$$
\mathrm{CIC} \longrightarrow \mathrm{CIC}
$$

Crucial steps

1. Give the structure of types, type families and terms
2. Translate type constructors (\mathbb{N}, Π) \& universes $\left[\mathbb{U}_{i}\right]: \llbracket \mathbb{U}_{i+1} \rrbracket$
3. Check that conversion is preserved ($\beta \delta \iota \zeta \eta \ldots$)

Syntactic Models: A Recipe

Crucial steps

1. Give the structure of types, type families and terms
2. Translate type constructors (\mathbb{N}, Π) \& universes $\left[\mathbb{U}_{i}\right]: \llbracket U_{i+1} \rrbracket$
3. Check that conversion is preserved ($\beta \delta \iota \zeta \eta \ldots$)
4. Extend the source CIC to a richer theory \mathcal{T} adding new constants and conversion rules

Ordered models of CIC

Types as (Pre)Orders

Step 1: Equip the translation of a type A with a relation

$$
\leq^{A} \quad: \quad A \rightarrow A \rightarrow \text { Type }
$$

reflexive: $(a: A) \rightarrow a \leq^{A} a$
transitive : $\left(a_{0} a_{1} a_{2}: A\right) \rightarrow a_{0} \leq^{A} a_{1} \rightarrow a_{1} \leq^{A} a_{2} \rightarrow a_{0} \leq^{A} a_{2}$
irrelevant: $\left(a_{0} a_{1}: A\right)\left(h h^{\prime}: a_{0} \leq^{A} a_{1}\right) \rightarrow h=h^{\prime}$
antisymmetric: $\left(a_{0} a_{1}: A\right) \rightarrow a_{0} \leq^{A} a_{1} \rightarrow a_{1} \leq^{A} a_{0} \rightarrow a_{0}=a_{1}$

Middle point between the reflexive graph and setoid models.

Type families ?

Translation of a type family $x: A \vdash B$ type

$$
\begin{array}{cl}
B: & A \quad \rightarrow \quad \text { Preorder } \\
B_{\left(a_{0} a_{1}: A\right)}^{\leq}: & a_{0} \leq^{A} a_{1} \quad \rightarrow \quad B a_{0} \sim B a_{1}
\end{array}
$$

indexed variants of reflexive, transitive
Multiple choices for (\sim) :

- Relations respecting the order
- Monotone maps
- Galois connections
- Embedding-projection pairs $X \triangleleft Y$

$$
\begin{aligned}
& \uparrow: X \rightarrow Y \\
& \downarrow: Y \rightarrow X
\end{aligned} \quad \text { such that } \quad\left\{\begin{array}{l}
\uparrow x \leq^{Y} y \Leftrightarrow x \leq^{X} \downarrow y \\
\downarrow \uparrow x=x
\end{array}\right.
$$

Interpretation of type constructors

Natural numbers

$$
\begin{array}{rc}
\vdash 0: \mathbb{N} & \vdash \mathrm{S}: \mathbb{N} \rightarrow \mathbb{N} \\
\vdash \text { ole }: 0 \leq^{\mathbb{N}} 0 & \vdash p f: p \leq^{\mathbb{N}} q \\
\vdash \text { CongrS } p f: \mathrm{S} p \leq^{\mathbb{N}} \mathrm{S} q
\end{array}
$$

Order relation $\leq \mathbb{N}$ induced by parametricity [Bernardy-Lasson]

Dependent products

$$
\begin{aligned}
(a: A) \xrightarrow{\text { mon }} B:= & \{f:(a: A) \rightarrow B \mid \\
& \left.\left(a_{01}: a_{0} \leq^{A} a_{1}\right) \rightarrow B^{\leq} a_{01}\left(f a_{0}\right)\left(f a_{1}\right)\right\} \\
f \leq g:=(a: A) \rightarrow & f a \leq^{B a} g a
\end{aligned}
$$

Models for Gradual Types

Mixing orders and exceptions

Required ingredients for a Gradual model:

- Types X endowed with a precision preorder \sqsubseteq^{X}
- Universal placeholders $?_{\mathrm{x}}$ such that $\forall \mathrm{x}: X, \mathrm{x} \sqsubseteq^{X} ?_{\mathrm{x}}$
- Errors raise ${ }_{X}$ such that $\forall x: X$, raise ${ }_{X} \sqsubseteq^{X} x$
- Whenever $X \sqsubseteq^{U} Y$, a pair of an upcast $\uparrow: X \rightarrow Y$ and a downcast $\downarrow: Y \rightarrow X$ forming an ep-pair $(\uparrow, \downarrow): X \triangleleft Y$

Mixing orders and exceptions

Required ingredients for a Gradual model:

- Types X endowed with a precision preorder \sqsubseteq^{X}
- Universal placeholders $?_{\mathrm{x}}$ such that $\forall \mathrm{x}: X, \mathrm{x} \sqsubseteq^{X}$? x
- Errors raise ${ }_{X}$ such that $\forall x: X$, raise ${ }_{X} \sqsubseteq^{X} x$
- Whenever $X \sqsubseteq^{U} Y$, a pair of an upcast $\uparrow: X \rightarrow Y$ and a downcast $\downarrow: Y \rightarrow X$ forming an ep-pair $(\uparrow, \downarrow): X \triangleleft Y$

Natural numbers

$$
\begin{gathered}
\vdash 0: \mathbb{N} \quad \vdash \mathrm{S}: \mathbb{N} \rightarrow \mathbb{N} \quad \vdash ?_{\mathbb{N}}: \mathbb{N} \quad \vdash \text { raise }_{\mathbb{N}}: \mathbb{N} \\
0 \sqsubseteq^{\mathbb{N}} 0 \quad \frac{p \sqsubseteq^{\mathbb{N}} q}{\mathrm{Sp} \sqsubseteq \mathrm{~S} q} \quad \text { raise }_{\mathbb{N}} \sqsubseteq^{\mathbb{N}} p \quad 0, ?_{\mathbb{N}} \sqsubseteq ?_{\mathbb{N}} \quad \frac{p \sqsubseteq ?_{\mathbb{N}}}{\mathrm{S} p \sqsubseteq ?_{\mathbb{N}}}
\end{gathered}
$$

An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

$$
\frac{\vdash A: \mathbb{U}_{i} \quad \vdash B: A \xrightarrow{\text { mon }} \mathbb{U}_{i}}{\vdash(a: A) \xrightarrow{\text { mon }} B a: \mathbb{U}_{i}}
$$

An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

$$
\frac{\vdash A: \mathbb{U}_{i} \quad \vdash B: A \xrightarrow{\text { mon }} \mathbb{U}_{i}}{\vdash(a: A) \xrightarrow{\text { mon }} B a: \mathbb{U}_{i}}
$$

2. $X \sqsubseteq^{U} Y$ irrelevant requires intensional data on types

An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

$$
\xrightarrow[{\vdash A: \mathbb{U}_{i} \quad \vdash B: A \xrightarrow{\text { mon }} \mathbb{U}_{i}}]{\vdash \pi A B: \mathbb{U}_{i}} \operatorname{El}(\pi A B):=(a: A) \xrightarrow{\mathrm{mon}} B a
$$

2. $X \sqsubseteq^{U} Y$ irrelevant requires intensional data on types

Inductive universe of codes \mathbb{U}_{i} and
Recursive decoding function El : $\mathbb{U}_{i} \rightarrow$ Type

An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

$$
\xrightarrow[{\vdash \pi A: \mathbb{U}_{i} \quad \vdash B: A \xrightarrow{\text { mon }} \mathbb{U}_{i}}]{\vdash \pi B: \mathbb{U}_{i}} \quad \operatorname{El}(\pi A B):=(a: A) \xrightarrow{\text { mon }} B a
$$

2. $X \sqsubseteq^{U} Y$ irrelevant requires intensional data on types

Inductive universe of codes \mathbb{U}_{i} and
Recursive decoding function El : $\mathbb{U}_{i} \rightarrow$ Type
3. Precision on codes decodes to embedding-projection pairs

$$
\text { Errl }^{\text {rel }} \quad: \quad X \sqsubseteq Y \quad \rightarrow \quad X \triangleleft Y
$$

$?_{\cup}: \mathbb{U}$
(by def)

$$
\begin{gathered}
?_{U}: \cup \\
?_{U} \rightarrow ?_{U}: U
\end{gathered}
$$

(by def)
(U closed under \rightarrow)

$$
\begin{gathered}
?_{U}: \cup \\
?_{U} \rightarrow ?_{U}: \cup \cup \\
?_{U} \rightarrow ?_{U} \sqsubseteq ?_{U}
\end{gathered}
$$

(by def)
(U closed under \rightarrow)
(? maximal for \sqsubseteq)

$$
\begin{gathered}
?_{U}: \cup \\
? \cup \rightarrow ?_{U}: \cup \\
?_{U} \rightarrow ?_{U} \sqsubseteq ?_{U} \\
?_{U} \rightarrow ?_{U} \triangleleft ?_{U}
\end{gathered}
$$

(by def)
(U closed under \rightarrow)
(? maximal for \sqsubseteq)
(by decoding)
? \cup hosts a model of pure λ-calculus

$$
\begin{gathered}
?_{U}: \mathbb{U} \\
?_{U} \rightarrow ?_{U}: U \\
?_{U} \rightarrow ?_{U} \sqsubseteq ?_{U} \\
?_{U} \rightarrow ?_{U} \triangleleft ?_{U}
\end{gathered}
$$

(by def)
(\mathbb{U} closed under \rightarrow)
(? maximal for \sqsubseteq)
(by decoding)
? 0 hosts a model of pure λ-calculus

Let's go back to Scott's domain theory
Add an ω-cpo structure on a type A :

$$
\sup ^{A}: \quad(\omega \xrightarrow{\text { mon }} A) \quad \longrightarrow A
$$

Dynamic type ? \cup as a sequential colimit

where

$$
F X \cong \mathbb{N}+X \rightarrow X+\ldots
$$

Dynamic type ? \cup as a sequential colimit

where

$$
F X \cong \mathbb{N}+X \rightarrow X+\ldots
$$

What's a typical element of ? U

- a tag corresponding to a summand of F, e.g. \rightarrow
- and an element of the corresponding type, e.g. $?_{U} \rightarrow ?_{U}$
$A \sqsubseteq ?_{\mathrm{U}}$ decomposes elements along the structure of A !

Conclusion

Recap

- CIC is a subtle equilbrium
- ... and I passed over many important details (impredicativity, indexed types, induction-recursion)
- Syntactic models can help prototyping extensions
- Even simple objects (orders) give rise to a whole spectrum

Further directions

- Study these models systematically
- As well as how they relate!
- Design full-fledge type theories (hard !)

