Ordered Models of CIC

Kenji Maillard

Inria Nantes, team Gallinette
Jow.w.

Meven Nicolas Eric Théo
Lennon- Tabareau Tanter Laurent
Bertrand

GdT LHC

Friday the 5th of February, 2021



What is CIC ?



CIC: logic & programs

CIC : Calculus of (Co)Inductive Constructions
A rich logical system & an expressive programming language

» Inductive and coinductive types with pattern-matching,
» functions (a: A) — B, (well-founded) fixpoints,
> Dependent types

F A type x: Al B type n:NF vect A n type



CIC: logic & programs

CIC : Calculus of (Co)Inductive Constructions
A rich logical system & an expressive programming language

P Inductive and coinductive types with pattern-matching,
» functions (a: A) — B, (well-founded) fixpoints,

> Dependent types internalized with Universes U;

|—A:U,'

_ Fvect A : (A:U;)(n:N)—U; FU;: Ui
F A type



CIC: logic & programs

CIC : Calculus of (Co)Inductive Constructions
A rich logical system & an expressive programming language

» Inductive and coinductive types with pattern-matching,
» functions (a: A) — B, (well-founded) fixpoints,
> Dependent types internalized with Universes U;

FA: U,'

_ Fvect A :(A:U;)(n:N)—U; FUj: Ui
F A type

Idealized metatheory of various proofs assistants:

& “a0da YIdris N



Computations

Conversion

F1+2=3:N Ft:A HFA=B
Hvect A(1+2)=vect A3 Ft:B

Trade-offs betweeen decidability and expressivity

fccl > Extensional TT

Trivial conversion BoCn Provable equality

Checking proofs Vs Writing proofs



Models of CIC For Fun And Profit



Motivation

Add new proof principles:
» Uniqueness of identity proofs (UIP)
» Function extensionality (funext)
» Quotients
» Univalence principle
» Markov principle

>

Parametricity

Account for existing programming features:
> Exceptions
» Access to a global environment
> Subtyping
» Dynamic type



Syntactic Models

Models of CIC in CIC:
» Defined inductively on the syntax of terms/types

[-1: Type — Type [—]: Term — Term
» Preserving conversion (no coherence hell)

r-A=8B = [F]F [A] = [B]

Main goal/theorem:

M-t:A = [[]F[:[A]



Syntactic Models (4)

Models of CIC in CIC:
» Defined inductively on the syntax of terms/types

[-]: Type — Type [<]: Term — Term
» Preserving conversion (no coherence hell)

[-A=8B — [r]+ [A] = [B]

Why syntactic models 7
> Useful to prototype extensions of CIC
P> Proposes extensions more amenable to implementations

» Help designing reductions/conversion rules



Examples from the literature

Reflexive graphs model: external parametricity [Atkey et al.]
Types equipped with a reflexive relation

Setoid model: UIP, funext [Altenkirch et al.]
Types equipped with an irrelevant equivalence relation

Exceptional model: Exceptions [Pédrot et al ]
Pointed types

Reader model: Reading and setting a global cell [Boulier et al.]
Presheaves on a set of states



Syntactic Models: A Recipe

[-]

CIC CIC

~

Crucial steps

1. Give the structure of types, type families and terms



Syntactic Models: A Recipe

[-]

CIC CIC

Crucial steps
1. Give the structure of types, type families and terms

2. Translate type constructors (N, 1) & universes [U;]

: [Uiga]



Syntactic Models: A Recipe

[-]

CIC CIC

Crucial steps
1. Give the structure of types, type families and terms

2. Translate type constructors (N, 1) & universes [Uj]
3. Check that conversion is preserved (55u(n...)

: [Uiga]



Syntactic Models: A Recipe

CIC 1]

\ Bl
embeds T

CIC

Crucial steps

1.

Give the structure of types, type families and terms

2. Translate type constructors (N, M) & universes [U;] : [Uj+1]
3.
4. Extend the source CIC to a richer theory T

Check that conversion is preserved (53.(n...)

adding new constants and conversion rules



Ordered models of CIC



Types as (Pre)Orders

Step 1: Equip the translation of a type A with a relation

<A A— A— Type
reflexive: (a: A) »a<”a
transitive : (agajax: A) — ag <Aoo <fa—a<ta
(30312 )(hhllao §A 31)%h:h/
(

ap ai - )%aogAaléalgAaO%aO:al

irrelevant :

antisymmetric :

Middle point between the reflexive graph and setoid models.



Type families 7
Translation of a type family x : A+ B type

B - A —  Preorder

< . A
B@oa1:A) : ag <" a1 — Baov Ba1

indexed variants of reflexive, transitive...

Multiple choices for (~):
P Relations respecting the order
» Monotone maps
» Galois connections

» Embedding-projection pairs X <Y

i <Y PN <X
XY cuch that tx<"yex<"tly
l:Y—=X Tx = x



Interpretation of type constructors

Natural numbers
FO:N FS:N—N

Fpfip<Ng

I—OleO:OSNO N
F CongrSpf:Sp<"Sgq

Order relation <N induced by parametricity [Bernardy-lLasson]

Dependent products

mon

(a:A)— B:={f:(a:A)— B |

(301 1 ap SA 31) — BS aol (f ao) (f 31) }

f<g:=(a:A)—~fa<Biga



Models for Gradual Types



Mixing orders and exceptions

Required ingredients for a Gradual model:
> Types X endowed with a precision preorder CTX
» Universal placeholders ?x such that Vx : X, x CX ?x
» Errors raisex such that Vx: X,raisex CX x

» Whenever X CVY Y, a pair of an upcast 1: X — Y and a
downcast | : Y — X forming an ep-pair (1,]): X <Y



Mixing orders and exceptions

Required ingredients for a Gradual model:
> Types X endowed with a precision preorder CTX
» Universal placeholders ?x such that Vx : X, x CX ?x
» Errors raisex such that Vx: X, raisex CX x
» Whenever X CVY Y, a pair of an upcast 1: X — Y and a
downcast | : Y — X forming an ep-pair (1,]): XY
Natural numbers

FO:N FS:N—N F?n:N F raisen : N

N E ?N
raisenC" " p 0,7y C 7N

ocNo — FrF="N
SpCSq SpC 7N



An Inductive-recursive hierarchy of Universes

//‘ - ‘\\
f \
(11,

Key ideas

1. Universes and their precision order must be defined mutually
FA:U;, +FB:AZNUy;

mon

F(a:A)— Ba:U;




An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually
FA:U;  FB:ATN U,

mon

F(a:A)— Ba:U;

2. X CY Y irrelevant requires intensional data on types



An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

FA:U; FB:A™L U,
Fx AB:U;

El(nAB):=(a: A) =% Ba

2. X CY Y irrelevant requires intensional data on types
Inductive universe of codes U; and
Recursive decoding function El : U; — Type



An Inductive-recursive hierarchy of Universes 1)

Key ideas

1. Universes and their precision order must be defined mutually

FA:U; FB:A™L U,
Fx AB:U;

El(nAB):=(a: A) =% Ba

2. X CY Y irrelevant requires intensional data on types
Inductive universe of codes U; and
Recursive decoding function El : U; — Type

3. Precision on codes decodes to embedding-projection pairs
E® . XCVY = X<Y

~> induces casts T,] between types



w-cpo and the Scott model

(by def)



w-cpo and the Scott model

7v:U

?U—)?UZU

(by def)

(U closed under —)



w-cpo and the Scott model

7v:U
?U—)?UZU

?U%?UE?U

(by def)
(U closed under —)

(? maximal for )



w-cpo and the Scott model

7u:U (by def)
u—7y:U (U closed under —)
W=y (? maximal for )
u—?u<?y (by decoding)

7y hosts a model of pure A-calculus



w-cpo and the Scott model
7u:U (by def)
u—7y:U (U closed under —)
W=y (? maximal for )
u—?u<?y (by decoding)

7y hosts a model of pure A-calculus

Let's go back to Scott's domain theory
Add an w-cpo structure on a type A:

sup (w™H A — A



Dynamic type ?y as a sequential colimit (13)

LSy Fl < Sy

\

colimpe, F"L =7y
where
FX =2 N 4+ X—=X +



Dynamic type 7y as a sequential colimit

colimpe, F"L =7y
where
FX =2 N 4+ X—=X +

What's a typical element of 7y
P> a tag corresponding to a summand of F, e.g. —

P> and an element of the corresponding type, e.g. 7u — ?u

A C 7y decomposes elements along the structure of A'!



Conclusion

Recap
» CIC is a subtle equilbrium

> .. .and | passed over many important details
(impredicativity, indexed types, induction-recursion)

» Syntactic models can help prototyping extensions

» Even simple objects (orders) give rise to a whole spectrum

Further directions
» Study these models systematically
P> As well as how they relate !

» Design full-fledge type theories (hard !)



	What is CIC ?
	Models of CIC For Fun And Profit
	Ordered models of CIC
	Models for Gradual Types

