
Ordered Models of CIC

Kenji Maillard

Inria Nantes, team Gallinette
j.w.w.

Meven Nicolas Éric Théo

Lennon- Tabareau Tanter Laurent

Bertrand

GdT LHC
Friday the 5th of February, 2021



What is CIC ?



1CIC: logic & programs

CIC : Calculus of (Co)Inductive Constructions
A rich logical system & an expressive programming language

I Inductive and coinductive types with pattern-matching,

I functions (a : A)→ B, (well-founded) fixpoints,

I Dependent types

` A type x : A ` B type n : N ` vect A n type

Idealized metatheory of various proofs assistants:



1CIC: logic & programs

CIC : Calculus of (Co)Inductive Constructions
A rich logical system & an expressive programming language

I Inductive and coinductive types with pattern-matching,

I functions (a : A)→ B, (well-founded) fixpoints,

I Dependent types internalized with Universes Ui

` A : Ui

` A type
` vect A : (A : Ui )(n : N)→ Ui ` Ui : Ui+1

Idealized metatheory of various proofs assistants:



1CIC: logic & programs

CIC : Calculus of (Co)Inductive Constructions
A rich logical system & an expressive programming language

I Inductive and coinductive types with pattern-matching,

I functions (a : A)→ B, (well-founded) fixpoints,

I Dependent types internalized with Universes Ui

` A : Ui

` A type
` vect A : (A : Ui )(n : N)→ Ui ` Ui : Ui+1

Idealized metatheory of various proofs assistants:



2Computations

Conversion

` 1 + 2 ≡ 3 : N

` vect A (1 + 2) ≡ vect A 3

` t : A ` A ≡ B

` t : B

Trade-offs betweeen decidability and expressivity

Weak TT CIC Extensional TT

Trivial conversion βδιζη Provable equality

Checking proofs vs Writing proofs



Models of CIC For Fun And Profit



3Motivation

Add new proof principles:

I Uniqueness of identity proofs (UIP)

I Function extensionality (funext)

I Quotients

I Univalence principle

I Markov principle

I Parametricity

Account for existing programming features:

I Exceptions

I Access to a global environment

I Subtyping

I Dynamic type



4Syntactic Models

Models of CIC in CIC:

I Defined inductively on the syntax of terms/types

J−K : Type → Type [−] : Term→ Term

I Preserving conversion (no coherence hell)

Γ ` A ≡ B =⇒ JΓK ` JAK ≡ JBK

Main goal/theorem:

Γ ` t : A =⇒ JΓK ` [t] : JAK



4Syntactic Models

Models of CIC in CIC:

I Defined inductively on the syntax of terms/types

J−K : Type → Type [−] : Term→ Term

I Preserving conversion (no coherence hell)

Γ ` A ≡ B =⇒ JΓK ` JAK ≡ JBK

Why syntactic models ?

I Useful to prototype extensions of CIC

I Proposes extensions more amenable to implementations

I Help designing reductions/conversion rules



5Examples from the literature

Reflexive graphs model: external parametricity [Atkey et al.]
Types equipped with a reflexive relation

Setoid model: UIP, funext [Altenkirch et al.]
Types equipped with an irrelevant equivalence relation

Exceptional model: Exceptions [Pédrot et al.]
Pointed types

Reader model: Reading and setting a global cell [Boulier et al.]
Presheaves on a set of states



6Syntactic Models: A Recipe

CIC CIC

T

J−K

embeds
J−K′

Crucial steps

1. Give the structure of types, type families and terms

2. Translate type constructors (N,Π) & universes [Ui ] : JUi+1K

3. Check that conversion is preserved (βδιζη . . .)

4. Extend the source CIC to a richer theory T
adding new constants and conversion rules



6Syntactic Models: A Recipe

CIC CIC

T

J−K

embeds
J−K′

Crucial steps

1. Give the structure of types, type families and terms

2. Translate type constructors (N,Π) & universes [Ui ] : JUi+1K

3. Check that conversion is preserved (βδιζη . . .)

4. Extend the source CIC to a richer theory T
adding new constants and conversion rules



6Syntactic Models: A Recipe

CIC CIC

T

J−K

embeds
J−K′

Crucial steps

1. Give the structure of types, type families and terms

2. Translate type constructors (N,Π) & universes [Ui ] : JUi+1K

3. Check that conversion is preserved (βδιζη . . .)

4. Extend the source CIC to a richer theory T
adding new constants and conversion rules



6Syntactic Models: A Recipe

CIC CIC

T

J−K

embeds
J−K′

Crucial steps

1. Give the structure of types, type families and terms

2. Translate type constructors (N,Π) & universes [Ui ] : JUi+1K

3. Check that conversion is preserved (βδιζη . . .)

4. Extend the source CIC to a richer theory T
adding new constants and conversion rules



Ordered models of CIC



7Types as (Pre)Orders

Step 1: Equip the translation of a type A with a relation

≤A : A→ A→ Type

reflexive : (a : A)→ a ≤A a

transitive : (a0 a1 a2 : A)→ a0 ≤A a1 → a1 ≤A a2 → a0 ≤A a2

irrelevant : (a0 a1 : A)(h h′ : a0 ≤A a1)→ h = h′

antisymmetric : (a0 a1 : A)→ a0 ≤A a1 → a1 ≤A a0 → a0 = a1

Middle point between the reflexive graph and setoid models.



8Type families ?

Translation of a type family x : A ` B type

B : A → Preorder

B≤(a0 a1:A) : a0 ≤A a1 → B a0 ; B a1

indexed variants of reflexive, transitive . . .

Multiple choices for (;):

I Relations respecting the order

I Monotone maps

I Galois connections

I Embedding-projection pairs X � Y

↑ : X → Y
↓ : Y → X

such that

{
↑ x ≤Y y ⇔ x ≤X ↓ y
↓ ↑ x = x



9Interpretation of type constructors

Natural numbers

` 0 : N ` S : N→ N

` 0le0 : 0 ≤N 0
` pf : p ≤N q

` CongrS pf : S p ≤N S q

Order relation ≤N induced by parametricity [Bernardy-Lasson]

Dependent products

(a : A)
mon−−→ B := { f : (a : A)→ B |

(a01 : a0 ≤A a1)→ B≤ a01 (f a0) (f a1) }

f ≤ g := (a : A)→ f a ≤B a g a



Models for Gradual Types



10Mixing orders and exceptions

Required ingredients for a Gradual model:

I Types X endowed with a precision preorder vX

I Universal placeholders ?X such that ∀x : X , x vX ?X

I Errors raiseX such that ∀x : X , raiseX vX x

I Whenever X vU Y , a pair of an upcast ↑ : X → Y and a
downcast ↓ : Y → X forming an ep-pair (↑, ↓) : X � Y

Natural numbers

` 0 : N ` S : N→ N ` ?N : N ` raiseN : N

0 vN 0
p vN q

S p v S q
raiseN vN p 0, ?N v ?N

p v ?N

S p v ?N



10Mixing orders and exceptions

Required ingredients for a Gradual model:

I Types X endowed with a precision preorder vX

I Universal placeholders ?X such that ∀x : X , x vX ?X

I Errors raiseX such that ∀x : X , raiseX vX x

I Whenever X vU Y , a pair of an upcast ↑ : X → Y and a
downcast ↓ : Y → X forming an ep-pair (↑, ↓) : X � Y

Natural numbers

` 0 : N ` S : N→ N ` ?N : N ` raiseN : N

0 vN 0
p vN q

S p v S q
raiseN vN p 0, ?N v ?N

p v ?N

S p v ?N



11An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

` A : Ui ` B : A
mon−−→ Ui

` (a : A)
mon−−→ B a : Ui

2. X vU Y irrelevant requires intensional data on types

Inductive universe of codes Ui and
Recursive decoding function El : Ui → Type

3. Precision on codes decodes to embedding-projection pairs

Elrel : X v Y → X � Y

; induces casts ↑, ↓ between types



11An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

` A : Ui ` B : A
mon−−→ Ui

` (a : A)
mon−−→ B a : Ui

2. X vU Y irrelevant requires intensional data on types

Inductive universe of codes Ui and
Recursive decoding function El : Ui → Type

3. Precision on codes decodes to embedding-projection pairs

Elrel : X v Y → X � Y

; induces casts ↑, ↓ between types



11An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

` A : Ui ` B : A
mon−−→ Ui

` π A B : Ui
El (π AB) := (a : A)

mon−−→ B a

2. X vU Y irrelevant requires intensional data on types
Inductive universe of codes Ui and
Recursive decoding function El : Ui → Type

3. Precision on codes decodes to embedding-projection pairs

Elrel : X v Y → X � Y

; induces casts ↑, ↓ between types



11An Inductive-recursive hierarchy of Universes

Key ideas

1. Universes and their precision order must be defined mutually

` A : Ui ` B : A
mon−−→ Ui

` π A B : Ui
El (π AB) := (a : A)

mon−−→ B a

2. X vU Y irrelevant requires intensional data on types
Inductive universe of codes Ui and
Recursive decoding function El : Ui → Type

3. Precision on codes decodes to embedding-projection pairs

Elrel : X v Y → X � Y

; induces casts ↑, ↓ between types



12ω-cpo and the Scott model

?U : U (by def)

?U → ?U : U (U closed under →)

?U → ?U v ?U (? maximal for v)

?U → ?U � ?U (by decoding)

?U hosts a model of pure λ-calculus

Let’s go back to Scott’s domain theory

Add an ω-cpo structure on a type A:

supA : (ω
mon−−→ A) −→ A



12ω-cpo and the Scott model

?U : U (by def)

?U → ?U : U (U closed under →)

?U → ?U v ?U (? maximal for v)

?U → ?U � ?U (by decoding)

?U hosts a model of pure λ-calculus

Let’s go back to Scott’s domain theory

Add an ω-cpo structure on a type A:

supA : (ω
mon−−→ A) −→ A



12ω-cpo and the Scott model

?U : U (by def)

?U → ?U : U (U closed under →)

?U → ?U v ?U (? maximal for v)

?U → ?U � ?U (by decoding)

?U hosts a model of pure λ-calculus

Let’s go back to Scott’s domain theory

Add an ω-cpo structure on a type A:

supA : (ω
mon−−→ A) −→ A



12ω-cpo and the Scott model

?U : U (by def)

?U → ?U : U (U closed under →)

?U → ?U v ?U (? maximal for v)

?U → ?U � ?U (by decoding)

?U hosts a model of pure λ-calculus

Let’s go back to Scott’s domain theory

Add an ω-cpo structure on a type A:

supA : (ω
mon−−→ A) −→ A



12ω-cpo and the Scott model

?U : U (by def)

?U → ?U : U (U closed under →)

?U → ?U v ?U (? maximal for v)

?U → ?U � ?U (by decoding)

?U hosts a model of pure λ-calculus

Let’s go back to Scott’s domain theory

Add an ω-cpo structure on a type A:

supA : (ω
mon−−→ A) −→ A



13Dynamic type ?U as a sequential colimit

⊥ F⊥ F n⊥ . . .

colimn∈ω F n⊥ = ?U

� ... ��

where
F X ∼= N + X → X + . . .

What’s a typical element of ?U

I a tag corresponding to a summand of F , e.g. →
I and an element of the corresponding type, e.g. ?U → ?U

A v ?U decomposes elements along the structure of A !



13Dynamic type ?U as a sequential colimit

⊥ F⊥ F n⊥ . . .

colimn∈ω F n⊥ = ?U

� ... ��

where
F X ∼= N + X → X + . . .

What’s a typical element of ?U

I a tag corresponding to a summand of F , e.g. →
I and an element of the corresponding type, e.g. ?U → ?U

A v ?U decomposes elements along the structure of A !



14Conclusion

Recap

I CIC is a subtle equilbrium

I . . . and I passed over many important details
(impredicativity, indexed types, induction-recursion)

I Syntactic models can help prototyping extensions

I Even simple objects (orders) give rise to a whole spectrum

Further directions

I Study these models systematically

I As well as how they relate !

I Design full-fledge type theories (hard !)


	What is CIC ?
	Models of CIC For Fun And Profit
	Ordered models of CIC
	Models for Gradual Types

