Implicit automata in typed λ-calculi

Pierre Pradic
Oxford University
j.w.w. NguYỄn Lê Thành Dũng (a.k.a. Tito) (Paris 13)

LHC, February 5th, 2021

Simply typed functions on Church numerals

Church encodings of (unary) natural numbers:

- Nat $=(o \rightarrow o) \rightarrow o \rightarrow o$
- $n \in \mathbb{N} \rightsquigarrow \bar{n}=\lambda f . \lambda x . f(\ldots(f x) \ldots)$: Nat with n times f
- all inhabitants of Nat are equal to some \bar{n} up to $={ }_{\beta \eta}$

Theorem (Schwichtenberg 1975)

The functions $\mathbb{N} \rightarrow \mathbb{N}$ definable by simply-typed λ-terms of type $N a t \rightarrow$ Nat are the extended polynomials (generated by $0,1,+, \times$, id and ifzero).

Church encodings of (unary) natural numbers:

- Nat $=(o \rightarrow o) \rightarrow o \rightarrow o$
- $n \in \mathbb{N} \rightsquigarrow \bar{n}=\lambda f . \lambda x . f(\ldots(f x) \ldots)$: Nat with n times f
- all inhabitants of Nat are equal to some \bar{n} up to $={ }_{\beta \eta}$

Theorem (Schwichtenberg 1975)

The functions $\mathbb{N} \rightarrow \mathbb{N}$ definable by simply-typed λ-terms of type $N a t \rightarrow$ Nat are the extended polynomials (generated by $0,1,+, \times$, id and ifzero).

Let's add a bit of (meta-level) polymorphism: $t=\mathrm{Nat}[A] \rightarrow \mathrm{Nat}$
where $\operatorname{Nat}[A]=\operatorname{Nat}[A / 0]=(A \rightarrow A) \rightarrow A \rightarrow A$

Open question

Choose some simple type A and some term $t: \operatorname{Nat}[A] \rightarrow$ Nat.
What functions $\mathbb{N} \rightarrow \mathbb{N}$ can be defined this way?

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat $=\operatorname{Str}_{\{1\}}$
Church encodings of strings over alphabet $\Sigma=\{a, b\}$:

- $\operatorname{Str}_{\{a, b\}}=(o \rightarrow o) \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o$
- $a b b \in\{a, b\}^{*} \rightsquigarrow \overline{a b b}=\lambda f_{a} \cdot \lambda f_{b} \cdot \lambda x \cdot f_{a}\left(f_{b}\left(f_{b} x\right)\right): \operatorname{Str}_{\Sigma}$

More generally $\operatorname{Str}_{\Sigma}=(o \rightarrow 0) \rightarrow \ldots|\Sigma|$ times $\ldots \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o$

Open question

Choose some simple type A and some term $t: \operatorname{Str}_{\Gamma}[A] \rightarrow \operatorname{Str}_{\Sigma}$.
What functions $\Gamma^{*} \rightarrow \Sigma^{*}$ can be defined this way?
Without input type substitutions, an answer is known [Zaionc 1987].

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat $=\operatorname{Str}_{\{1\}}$
Church encodings of strings over alphabet $\Sigma=\{a, b\}$:

- $\operatorname{Str}_{\{a, b\}}=(o \rightarrow 0) \rightarrow(o \rightarrow 0) \rightarrow 0 \rightarrow 0$
- $a b b \in\{a, b\}^{*} \rightsquigarrow \overline{a b b}=\lambda f_{a} \cdot \lambda f_{b} \cdot \lambda x \cdot f_{a}\left(f_{b}\left(f_{b} x\right)\right): \operatorname{Str}_{\Sigma}$

More generally $\operatorname{Str}_{\Sigma}=(o \rightarrow 0) \rightarrow \ldots|\Sigma|$ times $\ldots \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o$

Open question

Choose some simple type A and some term $t: \operatorname{Str}_{\Gamma}[A] \rightarrow \operatorname{Str}_{\Sigma}$.
What functions $\Gamma^{*} \rightarrow \Sigma^{*}$ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand \& Kanellakis 1996]

A subset of Σ^{*} is decidable by some $t: \operatorname{Str}_{\Sigma}[A] \rightarrow$ Bool if and only if it is a regular language.

Note: unary regular languages \cong ultimately periodic subsets of \mathbb{N}

λ-definable functions are regular

Theorem (Hillebrand \& Kanellakis, LICS'96)

For any type A and any simply typed λ-term $t: \operatorname{Str}_{\Sigma}[A] \rightarrow$ Bool, the language $\left\{w \in \Sigma^{*} \mid t \bar{w}={ }_{\beta}\right.$ true $\}$ is regular.

Proof by semantic evaluation.

Let $\llbracket-\rrbracket$ stand for the denotational semantics in the CCC of finite sets.
We build an automaton with finite set of states $Q=\llbracket \operatorname{Str}_{\Sigma}[A] \rrbracket$

$$
t \bar{w}={ }_{\beta} \text { true } \Longleftrightarrow \llbracket t \rrbracket(\llbracket \bar{w} \rrbracket)=\llbracket \text { true } \rrbracket \Longleftrightarrow w \text { accepted }
$$

(Proof of (\Leftarrow) : if $\operatorname{Card}(\llbracket o \rrbracket) \geq 2$ then \llbracket true $\rrbracket \neq \llbracket$ false $\rrbracket)$
Similar ideas in higher-order model checking, e.g. Grellois \& Melliès

Regular functions

Assume a λ-calculus for linear intuitionistic logic with additives

- $\lambda \rightarrow x$.t : $A \rightarrow B$ unrestricted function
- $\lambda^{\circ} x$.t $: A \multimap B$ linear function (exactly one x in t)
- coproducts $A \oplus B$ and products $A \& B$

Church encoding with linear types [Girard 1987]:

$$
\overline{a b b}=\lambda \rightarrow f_{a} \cdot \lambda f_{b} \cdot \lambda^{\circ} x \cdot f_{a}\left(f_{b}\left(f_{b} x\right)\right): \operatorname{Str}_{\{a, b\}}=(o \multimap o) \rightarrow(o \multimap o) \rightarrow o \multimap o
$$

Regular functions

Assume a λ-calculus for linear intuitionistic logic with additives

- $\lambda \rightarrow x$.t : $A \rightarrow B$ unrestricted function
- $\lambda^{\circ} x . t: A \multimap B$ linear function (exactly one x in t)
- coproducts $A \oplus B$ and products $A \& B$

Church encoding with linear types [Girard 1987]:

$$
\overline{a b b}=\lambda^{\prime} f_{a} \cdot \lambda f_{b} \cdot \lambda^{\circ} x \cdot f_{a}\left(f_{b}\left(f_{b} x\right)\right): \operatorname{Str}_{\{a, b\}}=(o \multimap o) \rightarrow(o \multimap o) \rightarrow o \multimap o
$$

Today's main theorem [Nguyễn \& P.]

$$
f: \Gamma^{*} \rightarrow \Sigma^{*} \text { is a regular function }
$$

$$
\Longleftrightarrow
$$

f is defined by some $t: \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in the intuitionistic linear λ-calculus with A purely linear, i.e. containing no ' \rightarrow '

Regular functions

Assume a λ-calculus for linear intuitionistic logic with additives

- $\lambda \rightarrow x$.t : $A \rightarrow B$ unrestricted function
- $\lambda^{\circ} x . t: A \multimap B$ linear function (exactly one x in t)
- coproducts $A \oplus B$ and products $A \& B$

Church encoding with linear types [Girard 1987]:

$$
\overline{a b b}=\lambda^{\overrightarrow{ }} f_{a} \cdot \lambda \lambda_{b} \cdot \lambda^{\circ} x \cdot f_{a}\left(f_{b}\left(f_{b} x\right)\right): \operatorname{Str}_{\{a, b\}}=(o \multimap o) \rightarrow(o \multimap o) \rightarrow o \multimap o
$$

Today's main theorem [Nguyễn \& P.]

$$
f: \Gamma^{*} \rightarrow \Sigma^{*} \text { is a regular function }
$$

f is defined by some $t: \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in the intuitionistic linear λ-calculus with A purely linear, i.e. containing no ' \rightarrow '

Regular functions are a classical topic, many equivalent definitions... One of them: copyless streaming string transducers [Alur \& Černý 2010]
\rightsquigarrow sounds suspiciously like affine types!

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Execution over abaa: start with

$$
X=\varepsilon \quad Y=\varepsilon
$$

Single-state streaming string transducers

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Execution over abaa:

$$
X=a \quad Y=a
$$

Single-state streaming string transducers

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Execution over abaa:

$$
X=a b \quad Y=b a
$$

Single-state streaming string transducers

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Execution over abaa:

$$
X=a b a \quad Y=a b a
$$

Single-state streaming string transducers

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Execution over abaa:

$$
X=a b a a \quad Y=a a b a
$$

Single-state streaming string transducers

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Execution over abaa: $f(a b a a)=a b a a a a b a$

$$
X=a b a a \quad Y=a a b a
$$

Single-state streaming string transducers

Definition

- Finite set of Σ^{*}-valued registers e.g. $R=\{X, Y\}$
- Initial values $R \rightarrow \Sigma^{*}$ e.g. $X_{\text {init }}=Y_{\text {init }}=\varepsilon$
- Register update function e.g. $\quad a \mapsto\left\{\begin{array}{l}X:=X a \\ Y:=a Y\end{array} \quad b \mapsto\left\{\begin{array}{l}X:=X b \\ Y:=b Y\end{array}\right.\right.$
- "output function" e.g. out $=X Y$

Execution over abaa: $\quad f(a b a a)=a b a a a a b a, f: w \mapsto w \cdot \operatorname{reverse}(w)$

$$
X=a b a a \quad Y=a a b a
$$

Stateful streaming string transducers

SSTs can also have states: their memory is $Q \times\left(\Sigma^{*}\right)^{R}$ (with $\left.|Q|<\infty\right)$

Stateful streaming string transducers

SSTs can also have states: their memory is $Q \times\left(\Sigma^{*}\right)^{R}$ (with $\left.|Q|<\infty\right)$

Copylessness restriction

Each register appears at most once on RHS of \leftarrow
(for each fixed input letter, at most once among all the associated \leftarrow)
Intuition: memory $M=Q \otimes \Sigma^{*} \otimes \ldots \otimes \Sigma^{*}$, transitions $M \multimap M$

$$
\left(Q \cong 1 \oplus \ldots \oplus 1, \text { concat }: \Sigma^{*} \otimes \Sigma^{*} \multimap \Sigma^{*}\right)
$$

Categorical automata

A framework for "single-pass" automata [Colcombet \& Petrişan 2017]

- internal memory $=$ object of a category \mathcal{C}
- transitions $=$ morphisms $\left(\right.$ and $\left[\right.$ letter \mapsto transition] $=$ functor $\left.\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}\right)$

- DFA = automata over the category of finite sets
- Copyless SSTs \approx start from a category \mathcal{R} of copyless register updates + add states by free finite coproduct completion $(-)_{\oplus}$

Categorical automata

A framework for "single-pass" automata [Colcombet \& Petrişan 2017]

- internal memory $=$ object of a category \mathcal{C}
- transitions $=$ morphisms $\left(\right.$ and $[$ letter \mapsto transition $]=$ functor $\left.\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}\right)$

- DFA = automata over the category of finite sets
- Copyless SSTs \approx start from a category \mathcal{R} of copyless register updates
+ add states by free finite coproduct completion $(-)_{\oplus}$

Definition of the free finite coproduct completion \mathcal{C}_{\oplus}

- Objects: formal finite sums $\bigoplus_{u \in U} C_{u}$ of objects of \mathcal{C}
- Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\oplus}}\left(\oplus_{u} C_{u}, \oplus_{v} D_{v}\right)=\prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}}\left(C_{u}, D_{v}\right)$

Categorical automata

A framework for "single-pass" automata [Colcombet \& Petrişan 2017]

- internal memory $=$ object of a category \mathcal{C}
- transitions $=$ morphisms (and [letter \mapsto transition] $=$ functor $\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}$)

- DFA $=$ automata over the category of finite sets
- Copyless SSTs \approx start from a category \mathcal{R} of copyless register updates + add states by free finite coproduct completion $(-)_{\oplus}$

Definition of the free finite coproduct completion \mathcal{C}_{\oplus}

- Objects: formal finite sums $\bigoplus_{u \in U} C_{u}$ of objects of \mathcal{C}

$$
\text { formally pairs }\left(U,\left(C_{u}\right)_{u \in U}\right), U \text { a finite set, } C_{u} \in \mathcal{C}_{0}
$$

- Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\oplus}}\left(\oplus_{u} C_{u}, \oplus_{v} D_{v}\right)=\prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}}\left(C_{u}, D_{v}\right)$

Categorical automata

A framework for "single-pass" automata [Colcombet \& Petrişan 2017]

- internal memory $=$ object of a category \mathcal{C}
- transitions $=$ morphisms (and [letter \mapsto transition] $=$ functor $\mathcal{T}_{\Sigma} \rightarrow \mathcal{C}$)

- DFA $=$ automata over the category of finite sets
- Copyless SSTs \approx start from a category \mathcal{R} of copyless register updates
+ add states by free finite coproduct completion $(-)_{\oplus}$

Definition of the free finite coproduct completion \mathcal{C}_{\oplus}

- Objects: formal finite sums $\bigoplus_{u \in U} C_{u}$ of objects of \mathcal{C}
formally pairs $\left(U,\left(C_{u}\right)_{u \in U}\right), U$ a finite set, $C_{u} \in \mathcal{C}_{0}$
- Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\oplus}}\left(\oplus_{u} C_{u}, \oplus_{v} D_{v}\right)=\prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}}\left(C_{u}, D_{v}\right)$

$$
\cong \sum_{f} \Pi_{u} \operatorname{Hom}_{\mathcal{C}}\left(C_{u}, D_{f(u)}\right)
$$

Compiling into higher-order transducers

Transductions definable in linear λ-calculus can be turned into automata over a category \mathcal{L} of purely linear λ-terms ($\mathrm{w} /$ const $f_{c}: o \multimap o$ for $c \in \Sigma$)

Claim

\mathcal{L}-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in linear λ-calculus can be turned into automata over a category \mathcal{L} of purely linear λ-terms ($\mathrm{w} /$ const $f_{c}: o \multimap o$ for $c \in \Sigma$)

Claim

\mathcal{L}-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in linear λ-calculus can be turned into automata over a category \mathcal{L} of purely linear λ-terms ($\mathrm{w} /$ const $f_{c}: o \multimap o$ for $c \in \Sigma$)

Claim

\mathcal{L}-automata compute the same string functions as λ-terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear λ-definable \Longrightarrow regular function
 Define a functor $\mathcal{L} \rightarrow \mathcal{R}_{\oplus}$ preserving enough structure

Useful fact: there is a canonical functor from \mathcal{L} to any symmetric monoidal closed category
Unfortunately R_{\oplus} is not monoidal closed...

Toward a monoidal closed category

So far, we encountered:

- \mathcal{L} : category of purely linear λ-terms ($\mathrm{w} /$ const $f_{c}: o \multimap o$ for $c \in \Sigma$)
- \mathcal{R} : category of finite sets of registers and copyless assignments
- \mathcal{R}_{\oplus} : free finite coproduct completion of the latter (add states)

Now consider:

- the free finite product completion: $\mathcal{C} \mapsto \mathcal{C}_{\&}=\left(\left(\mathcal{C}^{\mathrm{op}}\right)_{\oplus}\right)^{\mathrm{op}}$

Objects: formal products $\&_{x} C_{x}$

- the composite completion $\mathcal{C} \mapsto \mathcal{C}_{\&} \mapsto\left(\mathcal{C}_{\&}\right)_{\oplus}$

Objects: formal sums of products $\bigoplus_{u} \&_{x} C_{u, x}$
similar to de Paiva's Dialectica categories DC, think $\exists u . \forall x . \varphi(u, x)$

Goals toward our main theorem

- Structure: $\left(\mathcal{R}_{\&}\right)_{\oplus}$ has finite products and is monoidal closed
- Conservativity: $\left(\mathcal{R}_{\&}\right)_{\oplus}$-automata and \mathcal{R}_{\oplus}-automata are equivalent

Tensorial products can be lifted to the completions

- The new tensorial products satisfy the additional laws

$$
A \otimes(B \& C) \equiv(A \otimes B) \&(A \otimes C) \quad A \otimes(B \oplus C) \equiv(A \otimes B) \oplus(A \otimes C)
$$

- In particular, $\left(\mathcal{C}_{\&}\right)_{\oplus}$ has distributive cartesian products

$$
A \&(B \oplus C) \equiv(A \& B) \oplus(A \& C)
$$

When embedded in (co) presheafs \cong Day convolution

Structure (1): generic remarks $\left(\mathcal{C}_{\&}\right)_{\oplus}$

Tensorial products can be lifted to the completions

- The new tensorial products satisfy the additional laws

$$
A \otimes(B \& C) \equiv(A \otimes B) \&(A \otimes C) \quad A \otimes(B \oplus C) \equiv(A \otimes B) \oplus(A \otimes C)
$$

- In particular, $\left(\mathcal{C}_{\&}\right)_{\oplus}$ has distributive cartesian products

$$
A \&(B \oplus C) \equiv(A \& B) \oplus(A \& C)
$$

When embedded in (co) presheafs \cong Day convolution

Lemma ((folklore observation about dependent Dialectica categories?))

If \mathcal{C} is symmetric monoidal and $\left(\mathcal{C}_{\&}\right)_{\oplus}$ has the internal homs $A \multimap B$ for all $A, B \in \mathcal{C}$, then $\left(\mathcal{C}_{\&}\right)_{\oplus}$ is symmetric monoidal closed.

Lemma

\mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.
The construction appears in the original SST paper [Alur \& Černý 2010] without the categorical vocabulary.

$$
\left\{\begin{array} { l }
{ X : = a b X c Y } \\
{ Y : = b a }
\end{array} \quad \rightsquigarrow \quad \text { shape } \left\{\begin{array}{l}
X:=Z_{1} X Z_{2} Y \\
Y:=Z_{3}
\end{array} \quad+\quad \text { parameters } Z_{1}=a b, \ldots\right.\right.
$$

copyless SST \Longrightarrow finitely many shapes: use as states; registers for params

Lemma

\mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.
The construction appears in the original SST paper [Alur \& Černý 2010] without the categorical vocabulary.

$$
\left\{\begin{array} { l }
{ X : = a b X c Y } \\
{ Y : = b a }
\end{array} \quad \rightsquigarrow \quad \text { shape } \left\{\begin{array}{l}
X:=Z_{1} X Z_{2} Y \\
Y:=Z_{3}
\end{array} \quad+\quad \text { parameters } Z_{1}=a b, \ldots\right.\right.
$$

copyless SST \Longrightarrow finitely many shapes: use as states; registers for params

Conclusion

$\left(\mathcal{R}_{\&<}\right)_{\oplus}$ is symmetric monoidal closed (and almost affine).

Conservativity

Lemma

$\left(\mathcal{C}_{\&}\right)_{\oplus}$ automata are equivalent to non-deterministic \mathcal{C}_{\oplus} automata.
A uniformization (\sim determinization) theorem is enough to conclude

Conservativity

$\left(\mathcal{R}_{\&}\right)_{\oplus}$-automata are equivalent to standard SSTs.

- Uniformization already known [Alur \& Deshmuk 2011]
- Argument implicitly based on monoidal closure!

Theorem

For any monoidal category \mathcal{C}, if \mathcal{C}_{\oplus} has all the internal homsets $A \multimap B$ for $A, B \in \mathcal{C}$, then $\left(\mathcal{C}_{\&}\right)_{\oplus}$-automata and \mathcal{C}_{\oplus}-automata are equivalent.

Main results

I have just discussed

Today's main theorem [Nguyễn \& P.]

regular string function $\Longleftrightarrow \quad \begin{aligned} & \text { definable by some } t: \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma} \\ & \text { in ILL with } A \text { purely linear }\end{aligned}$

Main results

I have just discussed

Today's main theorem [Nguyễn \& P.]

$$
\text { regular string function } \Longleftrightarrow \quad \begin{aligned}
& \text { definable by some } t: \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma} \\
& \text { in ILL with } A \text { purely linear }
\end{aligned}
$$

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn \& P.]

regular tree function $\Longleftrightarrow \begin{aligned} & \text { definable by some } t: \operatorname{Tree}_{\Gamma}[A] \multimap \operatorname{Tree}_{\Sigma} \\ & \text { in ILL with } A \text { purely linear }\end{aligned}$

Main results

I have just discussed

Today's main theorem [Nguyễn \& P.]

regular string function \Longleftrightarrow
 definable by some $t: \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn \& P.]

$$
\text { regular tree function } \Longleftrightarrow \quad \begin{aligned}
& \text { definable by some } t: \operatorname{Tree}_{\Gamma}[A] \multimap \operatorname{Tree}_{\Sigma} \\
& \text { in ILL with } A \text { purely linear }
\end{aligned}
$$

Specific ingredients:

- Bottom-up categorical tree automata over SMCs
- A comparison of $\mathcal{C}_{\&}$ with a kind of coherence completion
- A reasonably elegant multicategory of tree registers transition

Conclusion

Today:

- Church encodings lead to connections with automata
- Additive connectives are important for trees
- Application of categorical semantics (Dialectica, GoI)

Broader picture

$\operatorname{Str}_{\Sigma}[A] \multimap$ Bool with A linear (adapted as needed):

λ-calculus	languages	status
simply typed	regular	\checkmark [Hillebrand \& Kanellakis 1996]
linear or affine	regular	\checkmark
non-commutative linear or affine	star-free	\checkmark

$\operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ with A affine (adapted as needed):		
λ-calculus	transducers	status
linear (without additives)	nothing interesting (?)	$\checkmark(?)$
affine	regular functions	\checkmark (coming soon)
non-commutative affine	first-order regular fn.	$\checkmark ?$
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

Conclusion

Today:

- Church encodings lead to connections with automata
- Additive connectives are important for trees
- Application of categorical semantics (Dialectica, GoI)

Broader picture

$\operatorname{Str}_{\Sigma}[A] \multimap$ Bool with A linear (adapted as needed):

λ-calculus	languages	status
simply typed	regular	\checkmark [Hillebrand \& Kanellakis 1996]
linear or affine	regular	\checkmark
non-commutative linear or affine	star-free	\checkmark

$\operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ with A affine (adapted as needed):		
λ-calculus	transducers	status
linear (without additives)	nothing interesting (?)	$\checkmark(?)$
affine	regular functions	\checkmark (coming soon)
non-commutative affine	first-order regular fn.	$\checkmark ?$
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

+ a characterization of $\operatorname{Str}[A] \rightarrow \operatorname{Str}$ as comparison-free polyregular functions

Conclusion

Today:

- Church encodings lead to connections with automata
- Additive connectives are important for trees
- Application of categorical semantics (Dialectica, GoI)

Broader picture

$\operatorname{Str}_{\Sigma}[A] \multimap$ Bool with A linear (adapted as needed):

λ-calculus	languages	status
simply typed	regular	\checkmark [Hillebrand \& Kanellakis 1996]
linear or affine	regular	\checkmark
non-commutative linear or affine	star-free	\checkmark

$\operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ with A affine (adapted as needed):		
λ-calculus	transducers	status
linear (without additives)	nothing interesting (?)	$\checkmark(?)$
affine	regular functions	\checkmark (coming soon)
non-commutative affine	first-order regular fn.	$\checkmark ?$
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	$? ?$
simply typed	variant of CPDA???	$? ? ?$

+ a characterization of $\operatorname{Str}[A] \rightarrow \operatorname{Str}$ as comparison-free polyregular functions

