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Starting point and motivating analogy

In algebraic geometry, there are two kinds of spaces:

B schemes which may be seen as commutative rings dualized
. into affine schemes and “glued together” in an appropriate way,

B bundles usually described as quasi-coherent modules
. over the structure sheaf of rings a specific scheme X.

Much progress has been made to design sheaf models of dependent and
homotopy type theory. There, a type is interpreted as a sheaf or a space.

The position of linear logic is not entirely clear from that point of view.
Could we understand linear logic as a logic of bundles on spaces?



The category ModR of modules

Every symm. monoidal closed category defines a model of linear logic.

Hence: the category ModR of R-modules for a given commutative ring R.

Conjunction as tensor product:

M ⊗R N as the abelian group M ⊗N quotiented

Implication and hypothetical reasoning as linear hom:

M(R N as the abelian group of R-module homomorphisms.

Purpose of this talk: extend / adapt this interpretation to presheaves of
modules over a covariant presheaf X ∈ [Ring,Set] of commutative rings.



An axiomatic approach to abelian groups

We want to axiomatize the properties of the category A = Ab of abelian
groups and homomorphisms between them.

We suppose given a symmetric monoidal category

(A ,⊗, 1)

where every reflexive pair

A B
f

g

has a coequalizer, preserved by the tensor product on each component.



Reflexive pairs

A reflexive pair in a category A is a pair of maps

A B
f

g

such that there exists a common section of the two maps f and g

A B
f

g
s

in the sense that the equations hold:

f ◦ s = idB = g ◦ s



Rings as commutative monoid objects

A commutative ring is an object R ∈ A equipped with two maps

m : R ⊗ R→ R e : 1→ R

making the diagrams commute:

R ⊗ R ⊗ R R ⊗ R

R ⊗ R R

m⊗R

R⊗m m

m

R ⊗ R

R R

R ⊗ R

me⊗R

R⊗e

idR

m

R ⊗ R R ⊗ R

R
m

γR,R

m



The category Ring of commutative rings

Given two rings R and S, a ring homomorphism

u : (R,mR, eR) (S,mS, eS)

is a map of the category A

u : R S

making the diagrams commute:

R ⊗ R S ⊗ S

R S

mR

u⊗u

mS

u

1

R S

eR eS

u



The category Ring of commutative rings

The category Ring is defined as the category

B whose objects are the commutative rings of the category A ,

B whose maps are the ring homomorphisms between them.

Note that the category Ring has finite sums defined by the tensor product.

The sum of two commutative rings R and S is the commutative ring R ⊗ S

with multiplication map defined using the symmetry:

R ⊗ S ⊗ R ⊗ S R ⊗ R ⊗ S ⊗ S R ⊗ S
R⊗γR,S⊗S mR⊗mS

and terminal object the monoidal unit 1 seen as a commutative ring.



The category ModR of modules over a ring R

Suppose given a commutative ring R.

An R-module is an object M ∈ A equipped with a map

act : R ⊗M M

making the diagrams below commute:

R ⊗ R ⊗M R ⊗M

R ⊗M M

mR⊗M

R⊗act act

act

R ⊗M

M M

acteR⊗M

idM

Equivalently, an R-module is an Eilenberg-Moore algebra for the monad

A 7→ R ⊗ A : A A

induced by the commutative ring R in the category A .



The category ModR of modules over a ring R

A R-module homomorphism between R-modules

f : (M, actM) (N, actN)

is a map f : M→ N making the diagram commute:

R ⊗M R ⊗N

M N

R⊗ f

actM actN
f

We write ModR for the category:

B whose objects are the R-modules,

B whose maps are the R-module homomorphisms between them.



The category Mod of modules
A module is a pair (R,M) consisting of

B a commutative ring R
B an R-module (M, actM)

A module homomorphism

(u, f ) : (R,M)→ (S,N)
is a pair consisting of

B a ring homomorphism u : R→ S

B a map f : M→ N making the diagram commute:

R ⊗M S ⊗N

M N

u⊗ f

actM actN
f



The category Mod of modules

The category Mod is defined as the category

B whose objects are the modules,

B whose maps are the module homomorphisms between them.

There is an obvious functor
π : Mod Ring

which transports every module (R,M) to its underlying commutative ring R.

For that reason, we find convenient to write

u : R S |= f : M N

for a module homomorphism (u, f ) : (R,M)→ (S,N).



The category Mod of modules

The notation

u : R S |= f : M N

is inspired by the intuition that every ring homomorphism

u : R S

induces a fiber consisting of all the module homomorphisms of the form

(u, f ) : (R,M) (S,N)

equivalently, of all the maps f : M→ N making the diagram commute:

R ⊗M S ⊗N

M N

u⊗ f

actM actN
f

Note that ModR is the fiber of the identity map idR : R→ R.



The Grothendieck bifibration π : Mod→ Ring

A well-known fact is that the functor

π : Mod Ring

defines a Grothendieck bifibration.

Every ring homorphism

u : R S

induces a restriction/extension adjunction between the fiber categories:

ModR ModS

extu

⊥

resu



The restriction of scalar functor

Every S-module (N, actN) induces a R-module noted

res u N = (N, act′N)

with same underlying object N as the original S-module, and with action

act′N : R ⊗N→ N

defined as the composite:

act′N = R ⊗N S ⊗N Nu⊗N actN

The S-module (N, actN) comes moreover with a module homomorphism

u : R S |= idN : resu N N (1)

which is cartesian in the (original) sense of Grothendieck.



The extension of scalar functor

The restriction of scalar functor

res u : ModS ModR

has a left adjoint noted

ext u : ModR ModS

One way to construct the functor ext u is to define the R ⊗ S-module

R ⊗u S

as the reflexive coequalizer of the diagram:

R ⊗ R ⊗ S R ⊗ S
mR⊗S

(R⊗mS) ◦ (R⊗u⊗S)

R⊗ eR⊗S



The extension of scalar functor

Given three rings R, S1 and S2, we define the composition functor

~R : ModS1⊗R ×ModR⊗S2 ModS1⊗S2

which transports a pair (M,N) consisting of
{

a S1 ⊗ R-module M
a R ⊗ S2-module N

to the S1 ⊗ S2-module M ⊗R N defined as the reflexive coequalizer of

M ⊗ R ⊗N M ⊗N
actM⊗N

M⊗ actN

M⊗ eR⊗N

Here, the two maps actM : M ⊗ R→M and actN : R ⊗N→ N are deduced
from the S1 ⊗ R-module structure of M and R ⊗ S2-module structure of N,
by restriction of scalar along R→ S1 ⊗ R and R→ R ⊗ S2.



The extension of scalar functor

The left adjoint functor

ext u : ModR ModS

is defined as
extu : M 7→ M ~R (R ⊗u S)

by applying the R ⊗ S-module

R ⊗u S

on the R-module M using the composition functor

~R : ModR ×ModR⊗S ModS



An axiomatic approach to abelian groups (2)

From now on, we make the extra assumption that

the category A is symmetric monoidal closed

and has all coreflexive equalizers.

The internal hom-object in A is noted Hom(M,N).



The category Mod
 of modules and retromorphisms

A module retromorphism

(u, f ) : (R,M)→ (S,N)

is a pair consisting of

B a ring homomorphism u : R→ S

B a map f : N→M making the diagram commute:

R ⊗M R ⊗N S ⊗N

M N

actM

R⊗ f u⊗N

actN

f



The category Mod
 of modules and retromorphisms

The category Mod
 is defined as the category

B whose objects are the modules,

B whose maps are the module retromorphisms between them.

There is an obvious functor

π
 : Mod
 Ring

which transports every module (R,M) to its underlying commutative ring R.

Note that the functor π
 is a Grothendieck fibration, which coincides in fact
with the opposite of the Grothendieck fibration π.



The Grothendieck bifibration π
 : Mod

→ Ring

It turns out that the functor

π
 : Mod
 Ring

defines in fact a Grothendieck bifibration.

The reason is that every ring homorphism

u : R S

induces a restriction/coextension adjunction between fiber categories:

Mod

R Mod


S

coextu

⊥

resu

where the category Mod

R is the opposite of the category ModR.



The coextension of scalar functor

The restriction of scalar functor

res u : Mod

S Mod


R

has a left adjoint noted

coext u : Mod

R Mod


S

The functor coextu transports every R-module (M, actM) to the S-module

coext u(M) = [S,M]u

defined as the coreflexive equalizer of the diagram:

Hom(S,M) Hom(R ⊗ S,M)

Hom(u⊗S ,M) ◦Hom( mS ,M)

Hom(R⊗S , actM) ◦Hom(R⊗−,R⊗−)

Hom(eR⊗S ,M)



The coextension of scalar functor

The coreflexive equalizer coext u(M) provides an internal description in the
category A of the set of maps f : S→M making the diagram commute:

R ⊗M R ⊗ S

S ⊗ S

M S

actM

R⊗ f

u⊗S

mS
f

or equivalently, as the set of R-module homomorphisms f : res uS→M.



The trifibration π : Mod→ Ring of modules

Putting together all the constructions, every ring homomorphism

R Su

induces three functors

ModR ModS

coext u

ext u

res u

organized into a sequence of adjunctions

ext u a res u a coext u

where extension of scalar extu is left adjoint, and coextension of scalar coextu,
right adjoint to restriction of scalar resu.



Ringed categories

A ringed category is as a pair (C , π) consisting of

B a category C ,

B a functor π : C → Ring to the category of commutative rings.

Typically, the category Mod defines a ringed category, with functor:

π : Mod Ring

The slice 2-category Cat/Ring has ringed categories as objects, fibrewise
functors and natural transformations as 1-cells and 2-cells.

The 2-category Cat/Ring is cartesian, with cartesian product defined by
the expected pullback above Ring.



Mod as a symmetric monoidal ringed category

The cartesian product of Mod with itself is computed by the pullback:

Mod ×Ring Mod Mod

Mod Ring

π

π

and comes equipped with a fibrewise tensor product

⊗Mod : Mod ×Ring Mod Mod

which transports every pair of modules on the same ring R

(R,M) (R,N)

to the R-module (R,M ⊗R N) defined by their tensor product in ModR.



Mod as a symmetric monoidal ringed category

The functor ⊗Mod transports every pair of module homomorphisms

u : R S |= h1 : M1 N1

u : R S |= h2 : M2 N2

above the same ring homomorphism u : R→ S to the homomorphism

u : R S |= h1 ⊗u h2 : M1 ⊗R M2 N1 ⊗S N2

where h1 ⊗u h2 is the unique map making the diagram commute:

M1 ⊗ R ⊗M2 N1 ⊗ S ⊗N2

M1 ⊗M2 N1 ⊗N2

M1 ⊗R M2 N1 ⊗S N2

h1⊗u⊗ h2

actM1
⊗M2 M1⊗ actM2 actN1

⊗N2 N1⊗ actN2h1⊗ h2

quotient map quotient map
h1⊗u h2



Mod as a symmetric monoidal ringed category

In this way, the ring category

π : Mod Ring

defines a symmetric pseudomonoid in the 2-category Cat/Ring.

This is what we call a symmetric monoidal ringed category.

Note that the fibrewise unit of (Mod, π) is defined as the functor

1Mod : Ring Mod

which transports every commutative ring R into itself, seen as an R-module.



Functors of points and Ring-spaces

A Ring-space is defined as a covariant presheaf

X : Ring Set

on the category Ring of commutative rings,

To every such Ring-space X, we associate its Grothendieck category

Points(X)

B whose objects are the pairs (R, x) with x ∈ X(R)

B whose maps u : (R, x)→ (S, y) are ring homomorphisms u : R→ S
. transporting the element x ∈ X(R) to the element y ∈ X(S),
. in the sense that

X(u)(x) = y.



Functors of points and Ring-spaces

The category Points(X) comes equipped with a functor of point

πX : Points(X) Ring

and thus defines a ringed category.

A map f : X→ Y of Ring-spaces may be equivalently defined as a functor

f : Points(X) Points(Y)

making the diagram commute:

Points(X) Points(Y)

Ring

f

πX πY

thus defining a functor of ringed categories.



Presheaves of modules

A presheaf of modules M on a Ring-space

X : Ring Set

or more simply, an OX-module M, consists of the following data:

B for each point (R, x) ∈ Points(X), a module Mx ∈ModR over the ring R,

B for each map u : (R, x)→ (S, y) in Points(X), a module homomorphism

u : R S |= θ(u, x) : Mx Ny

living over the ring homomorphism u : R→ S.

Adapted from Demazure-Gabriel (1970) and Kontsevich-Rosenberg (2004).



Presheaves of modules

The map θ is required to satisfy the following functorial properties:

1. first of all, the identity on the point (R, x) in the category Points(X) is
transported to the identity map on the associated R-module:

idR |= θ(id(R,x)) = idMx

2. then, given two maps

(u, x) : (R, x)→ (S, y) (v, y) : (S, y)→ (T, z)

in the category Points(X), one has:

v ◦ u |= θ((v, y) ◦ (u, x)) = θ(v, y) ◦ θ(u, x)

where composition is computed in the ringed category Points(X)→ Ring.



Presheaves of modules

In the sequel, we will use the following equivalent formulation:

Proposition. An OX-module M is the same thing as a functor

M : Points(X) Mod

making the diagram below commute:

Points(X) Mod

Ring

M

πX π

Note that Kontsevich and Rosenberg (2004) use this specific formulation
of presheaves of modules in their work on noncommutative geometry.



The structure presheaf of modules

Every Ring-space

X : Ring Set

comes equipped with a specific presheaf of module, called the structure
presheaf of modules, and defined as the composite

OX : Points(X) Ring Mod
πX O

where the functor

O = 1Mod : Ring→Mod

denotes the section of π : Mod→ Ring which transports every commuta-
tive ring R to itself, seen as an R-module.



The category PshMod of presheaves of modules
and forward morphisms

A forward morphism between presheaves of modules

( f , ϕ) : (X,M) (Y,N)

is a morphism (= natural transformation) of Ring-spaces f : X→ Y
together with a natural transformation

Points(X) Points(Y)

Mod

Points( f )

M N

ϕ



The category PshMod of presheaves of modules
and forward morphisms

The natural transformation ϕ is also required to be vertical (or fibrewise)
above Ring, in the sense that the natural transformation

Points(X) Points(Y)

Mod

Ring

Points( f )

M

πX

N

πYπ

ϕ

idid

coincides with the identity natural transformation from πX to πY ◦ f .



The category PshMod of presheaves of modules
and forward morphisms

There is an obvious functor
p : PshMod [Ring,Set]

which transports every presheaf of modules (X,M) to its underlying Ring-
space X, and every forward morphism ( f , ϕ) : (X,M)→ (Y,N) to its under-
lying morphism f : X→ Y between Ring-spaces.

We thus find convenient to write

f : X Y |= ϕ : M N

for a forward morphism between presheaves of modules

( f , ϕ) : (X,M)→ (Y,N)



The functor p is a Grothendieck fibration

Every morphism f : X→ Y of Ring-spaces X and Y induces a functor

f ∗ : PshModY PshModX

which transports every OY-module N into the OX-module N ◦ Points( f )
obtained by precomposition with the functor Points( f ), as depicted below:

Points(X) Points(Y)

Mod

Ring

Points( f )

πX πY

N

π



An axiomatic approach to abelian groups (3)

Here, we make the extra assumption that

the category Ring

as well as

every category ModR associated to a commutative ring R

has all small colimits.

The property holds in the case of the category A = Ab of abelian groups.



The functor p is a Grothendieck bifibration

In that case, it turns out that the functor

p : PshMod [Ring,Set]

is also a Grothendieck bifibration, but for less immediate reasons.

For every morphism f : X→ Y between Ring-spaces, the functor

f ∗ : PshModY PshModX

has a left adjoint

∃ f : PshModX PshModY



The functor p is a Grothendieck bifibration

It is worth noting that the OY-module ∃ f (M) can be directly described with
an explicit formula:

∃ f (M) : y ∈ Y(R) 7→
⊕

{x∈X(R), f x=y}

Mx ∈ModR.

The adjunction ∃ f a f ∗ gives rise to a sequence of natural bijections, which
can be formulated in the type-theoretic fashion of PAM-Zeilberger (2015)

idX : X→ X |= M→ f ∗(N)
f : X→ Y |= M→ N

idY : Y→ Y |= ∃ f (M)→ N



The category PshMod
 of presheaf of modules
and backward morphisms

A backward morphism between presheaves of modules

( f , ψ) : (X,M) (Y,N)

is a morphism (= natural transformation) of Ring-spaces f : X→ Y
together with a natural transformation

Points(X) Points(Y)

Mod

f

M N

ψ



The category PshMod
 of presheaf of modules
and backward morphisms

One requires moreover that ψ is vertical in the sense that the diagram
below commutes:

Points(X) Points(Y)

Mod

Ring

f

M

πX

N

πYπ

ψ



The category PshMod
 of presheaf of modules
and backward morphisms

The category PshMod
 has presheaves of modules as objects, and back-
ward morphism as morphisms. There is an obvious functor

p
 : PshMod
 [Ring,Set]

We thus find convenient to write

f : X Y |=op ψ : M N

for such a backward morphism ( f , ψ) : (X,M)→ (Y,N) between presheaves
of modules.



An axiomatic approach to abelian groups (4)

Here, we make the extra assumption that

the category Ring

as well as

every category ModR associated to a commutative ring R

has all small limits.

The property holds in the case of the category A = Ab of abelian groups.



The functor p
 is a Grothendieck bifibration

As the opposite of the fibration p, the functor

p
 : PshMod
 [Ring,Set]

is also a Grothendieck fibration with the opposite functor

( f ∗)op : PshMod op
Y PshMod op

X

as pullback functor associated to a morphism f : X→ Y of Ring-spaces.

Fact. There is a functor

∀ f : PshModX PshModY.

right adjoint to the functor f ∗.

By duality, the functor (∀ f ) op is left adjoint to the functor ( f ∗) op.



The functor p is a Grothendieck trifibration

The adjunction f ∗ a ∀ f gives rise to a sequence of natural bijections, for-
mulated below in the type-theoretic fashion:

idX : X→ X |=op M→ f ∗(N)
f : X→ Y |=op M→ N

idY : Y→ Y |=op
∀ f (M)→ N

In summary, every morphism f : X→ Y between Ring-spaces X and Y
induces three functors

PshModX PshModY

∀ f

∃ f

f ∗

organized into a sequence of adjunctions

∃ f a f ∗ a ∀ f .



The category PshMod is symmetric monoidal closed
above the cartesian closed category [Ring,Set]

The presheaf category [Ring,Set] of Ring-spaces is cartesian closed.

We exhibit a symmetric monoidal closed structure on PshMod designed
in such a way that the functor

p : PshMod [Ring,Set]

is symmetric monoidal closed.



The cartesian structure on [Ring,Set]

Suppose given a pair of Ring-spaces

X,Y : Ring Set

and a pair of presheaves of modules M and N over them:

M ∈ PshModX N ∈ PshModY.

The cartesian product X × Y of Ring-spaces is defined pointwise:

X × Y : R 7→ X(R) × Y(R).



The monoidal structure on PshMod

The tensor product

M ⊗N ∈ PshModX×Y

is defined using the isomorphism:

Points(X × Y) � Points(X) ×Ring Points(Y)

as the presheaf of modules

Points(X × Y) Mod ×Ring Mod Mod
(M,N) ⊗

where the functor (M,N) is defined by universality of the pullback.



The monoidal structure on PshMod

The unit of the tensor product is the structure presheaf of modules

(SpecZ,OSpecZ) : (R, ∗R) 7→ R ∈ModR

on the terminal object SpecZ of the category [Ring,Set].

Here, ∗R denotes the unique element of the singleton set SpecZ(R).



The closed structure on PshMod

The internal hom X⇒ Y in [Ring,Set] is the covariant presheaf

X⇒ Y : Ring Set

which associates to every commutative ring R the set

X⇒ Y : R 7→ ([Ring,Set]/yR)(yR × X,yR × Y)

of natural transformations f making the diagram commute:

yR × X yR × Y

yR

f

πR,X πR,Y



The closed structure on PshMod

Here,

yR ∈ [Ring,Set]

denotes the Yoneda presheaf

yR : S 7→ Ring(R,S) : Ring Set

generated by the commutative ring R, while

πR,X : yR × X yR

πR,Y : yR × Y yS

denote the first projections in the cartesian category [Ring,Set].



The closed structure on PshMod

The presheaf of modules

M( N ∈ PshMod(X⇒Y)

is constructed in the following way. To every element

f ∈ (X⇒ Y)(R)

we associate the R-module

(M( N) f

consisting of all natural transformations ϕ making the diagram commute:



The closed structure on PshMod

Points(yR × X) Points(yR × Y)

Points(X) Points(Y)

Mod

Ring

f

Points(π2) Points(π2)

πX

M N

πYπ

ϕ



The closed structure on PshMod

The R-module

(M( N) f ∈ ModR

associated to the map of Ring-space

f : yR × X yR × Y

can be computed using the end formula

(M( N) f =

∫
(u:R→S,x∈X(S))∈Points(yR×X)

resu ( [Mx,N f (u,x)]S )

in the category ModR.



Main result of the talk

Theorem. The tensor product

M,N 7→M ⊗N

and the implication just defined

M,N 7→M( N

equip PshMod with the structure of a symmetric monoidal category.

This structure is moreover transported by the functor

p : PshMod [Ring,Set]

to the cartesian closed structure of [Ring,Set] in the sense that

p(M ⊗N) = X × Y p(M( N) = X⇒ Y

for the Ring-spaces X = p(M) and Y = p(N).



Application: PshModX is a smcc

We establish that the category PshModX associated to a Ring-space

X : Ring Set

is symmetric monoidal closed. The tensor product M ⊗X N of a pair of
OX-modules M,N is defined as

M ⊗X N := ∆∗(M ⊗N)

where we use the notation

∆ : X X × X

for the diagonal map induced by the cartesian structure of the presheaf
category [Ring,Set]. The tensorial unit is defined as the structure presheaf
of modules OX associated to the Ring-space X.



Application: PshModX is a smcc

The internal hom M(X N of a pair of OX-modules M,N is defined as

M(X N := curry∗(M( ∀∆(N))

where

curry : X X⇒ (X × X)

is the map obtained by currifying the identity map

idX×X : X × X X × X

on the second component X. One obtains that

Proposition. The category PshModX equipped with ⊗X and(X defines
a symmetric monoidal closed category.



Proof in a nutshell

idX : X→ X |= (M ⊗X N)→ P
idX : X→ X |= ∆∗(M ⊗N)→ P

idX : X→ X |=op P→ ∆∗(M ⊗N)
∆ : X→ X × X |=op P→M ⊗N

idX×X : X × X→ X × X |=op
∀∆(P)→M ⊗N

idX×X : X × X→ X × X |= M ⊗N→ ∀∆(P)
curry : X→ X⇒ (X × X) |= N→M( ∀∆(P)

idX : X→ X |= N→ curry∗(M( ∀∆(P))
idX : X→ X |= N→ (M(X P)

Sequence of natural bijections establishing that the functor

M ⊗X − : PshModX PshModX
is left adjoint to the functor

M(X − : PshModX PshModX

for any presheaf of modules M ∈ PshModX.



Application: change-of-basis functors

Moreover, given a morphism X→ Y in [Ring,Set] and two OY-modules M
and N, the fact that ∆Y ◦ f = ( f × f ) ◦ ∆X and the isomorphism

( f × f )∗(M ⊗N) � f ∗(M) ⊗ f ∗(N)

imply that
f ∗ : PshModY PshModX

defines a strongly monoidal functor, in the sense that there exists a
family of isomorphisms

mX,M,Y,N : f ∗(M) ⊗X f ∗(N) f ∗(M ⊗Y N)∼

mX,Y : OX f ∗(OY)∼

making the expected coherence diagrams commute.



Application: change-of-basis functors

From this follows that

B the right adjoint functor ∀ f is lax symmetric monoidal ;

B the adjunction f ∗ a ∀ f is lax symmetric monoidal ;

B the left adjoint functor ∃ f is oplax symmetric monoidal ;

B the adjunction ∃ f a f ∗ is oplax symmetric monoidal.

In particular, the two functors ∀ f and ∃ f come with families of maps:

∀ f (M) ⊗N ∀ f (Y) ∀ f (M ⊗X N) OY ∀ f (OX)

∃ f (M ⊗X N) ∃ f (M) ⊗Y ∃ f (N) ∃ f (OX) OY

parametrized by OX-modules M and N.



What we did not speak about here

B the Sweedler dual construction of a free commutative coalgebra

Mod Alg

Sym

>

Forget

B the induced construction of an linear-non-linear adjunction

PshCoAlgX PshModX

LinX

>

ExpX

. defining an exponential modality A 7→ !A for linear logic.



Conclusion and future directions

B work with sheaves and schemes instead of general presheaves,

B understand the structure of the inclusion functor

qcModX PshModX

. from the category qcModX of quasi-coherent modules.

B shift to derived categories and clarify the connection

linear logic ↔ Grothendieck-Verdier duality

B explore the connection to dependent and homotopy type theory.



Thank you !



The closed structure on PshMod

This condition may be expanded using the notation f (u, x) = (u, f̃ (u, x)).

Such a natural transformation ϕ is a family of module homomorphisms

idS : S S |= ϕu,x : Mx N f̃ (u,x)

for u : R→ S and x ∈ X(S), natural in u and x in the sense that the diagram

Mx N f̃ (u,x)

Mx′ N f̃ (v◦u,x′)

ϕu,x

Mv N f̃ (v,v)
ϕv◦u,x′

commutes for every ring homomorphism v : S→ S′ with X(v)(x) = x′.


