A Coherator For Semi-Cubical Weak ω-Categories

Thibaut Benjamin
Journées LHC, 7 June 2023
University of Cambridge
Higher categories may come in different flavours

- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, ...
Higher categories may come in different flavours

- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, \ldots

\[\text{today} \]
\[\omega \]
\[\text{weak} \]
\[\text{globes/cubes} \]
Higher categories may come in different flavours

- existence of cells up to a certain level
- strict vs. weak
- various basic shapes: globes, simplices, cubes, opetopes, ...

Globular weak ω-categories

- Batanin-Leinster: Algebras for the initial globular operad with contraction.
- Maltsiniotis (after Grothendieck): Defined by a coherator.
- Ara (a bit of help from Bourke): The Grothendieck-Maltsiniotis definition can specialize to the Batanin-Leinster one.
Aim: Define a coherator for semi-cubical weak \(\omega \)-categories à la Grothendieck-Maltsiniotis (WIP).

- weak \(\omega \)-categories based on the category of semi-cubes
- Unpublished work I did during my PhD (circa. 2019/2020)
- Please give me your feedback
Aim: Define a coherator for semi-cubical weak ω-categories à la Grothendieck-Maltsiniotis (WIP).

- weak ω-categories based on the category of semi-cubes
- Unpublished work I did during my PhD (circa. 2019/2020)
- Please give me your feedback

Cubical weak ω-categories

- Kachour: weak ω-categories on reflexive cubes à la Batanin-Leinster, but newer publications getting closer to the Grothendieck-Maltsiniotis style.
- Grandis: cubical categories with symmetries.
Grothendieck-Maltsiniotis globular weak ω-categories
Globes and Globular Sets

- The category of globes \mathbb{G}:

$$
\begin{align*}
0 \xrightarrow{\sigma} 1 \xrightarrow{\sigma} 2 \xrightarrow{\sigma} \ldots \\
\sigma \sigma = \tau \sigma & \quad \sigma \tau = \tau \tau
\end{align*}
$$
Globes and Globular Sets

The category of globes \mathcal{G}:

\[
\begin{array}{cccc}
0 & \xrightarrow{\sigma} & 1 & \xrightarrow{\sigma} & 2 & \xrightarrow{\sigma} & \ldots \\
& & & & & & \\
\tau & & & & & & \\
\end{array}
\]

$\sigma \sigma = \tau \sigma \quad \sigma \tau = \tau \tau$

Globular sets are presheaves on \mathcal{G}:

\[
\begin{array}{cccc}
X_0 & \xleftarrow{s} & X_1 & \xleftarrow{s} & X_2 & \xleftarrow{s} & \ldots \\
& & & & & & \\
t & & & & & & \\
\end{array}
\]

$ss = st \quad ts = tt$
Globes and Globular Sets

- **The category of globes** \(\mathbb{G} \):

 \[
 \begin{array}{ccccccc}
 0 & \xrightarrow{\sigma} & 1 & \xrightarrow{\sigma} & 2 & \xrightarrow{\sigma} & \ldots \\
 \tau & & \tau & & \tau & & \tau
 \end{array}
 \]

 \(\sigma \sigma = \tau \sigma \quad \sigma \tau = \tau \tau \)

- **Globular sets** are presheaves on \(\mathbb{G} \):

 \[
 X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} \ldots
 \]

 \(ss = st \quad ts = tt \)

\[\xymatrix{\alpha \ar@/^{0.8pc}/[rr]_{f} & \ar@/^/[r]_{f'} & \ar@{_{(}->}[r]_{l} & y \ar@/^{0.8pc}/[rr]^{kh} & \ar@/^/[r]_{k} & z \ar@/^{0.8pc}/[rr]^{w} & }\]
Globes and Globular Sets

- The category of globes G:

 \[
 0 \xrightarrow{\sigma} 1 \xrightarrow{\sigma} 2 \xrightarrow{\sigma} \ldots \quad \sigma \sigma = \tau \sigma \quad \sigma \tau = \tau \tau
 \]

- Globular sets are presheaves on G:

 \[
 X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} \ldots \quad ss = st \quad ts = tt
 \]

- Disks are the representable presheaves

 \[
 D^0 : \cdot \quad D^1 : \cdot \rightarrow \cdot \quad D^2 : \cdot \circlearrowleft \cdot \quad D^3 : \cdot \circlearrowright \downarrow \cdot \quad \ldots
 \]
Pasting Schemes/Globular Sums

- **idea**: *Pasting schemes* are the globular sets that should describe a unique composition.
Pasting Schemes/Globular Sums

- idea: Pasting schemes are the globular sets that should describe a unique composition.

Formally, they are obtained as globular sums, i.e., limits of the following form:

\[
\begin{align*}
D_{i_1} & \rightarrow D_{i_2} & \cdots & \rightarrow D_{i_k} \\
D_{j_1} & \rightarrow D_{j_2} & \cdots & \rightarrow D_{j_k}
\end{align*}
\]
Pasting Schemes/Globular Sums

idea: *Pasting schemes* are the globular sets that should describe a unique composition.

Formally, they are obtained as *globular sums*, i.e., limits of the following form:

\[D^{i_1} \leftarrow D^{i_2} \leftarrow \ldots \leftarrow D^{i_k} \]

\[D^{j_1} \rightarrow D^{j_2} \rightarrow \ldots \rightarrow D^{j_{k-1}} \]
Every pasting scheme P has a \textit{boundary} ∂P: Formally replace every occurrence of $\text{dim } P$ in the globular sum with $\text{dim } P - 1$
Every pasting scheme P has a boundary ∂P: Formally replace every occurrence of $\dim P$ in the globular sum with $\dim P - 1$

There exists two maps, called source and target:

$$\partial_P^-, \partial_P^+: \partial P \to P$$
Source and Target of a Pasting Scheme

- Every pasting scheme P has a boundary ∂P: Formally replace every occurrence of $\text{dim } P$ in the globular sum with $\text{dim } P - 1$

- There exists two maps, called source and target

$$\partial_P^-, \partial_P^+: \partial P \to P$$

Example
Every pasting scheme P has a boundary ∂P: Formally replace every occurrence of $\dim P$ in the globular sum with $\dim P - 1$.

There exists two maps, called source and target:

$$\partial_P^-, \partial_P^+ : \partial P \to P$$

Example

$$\begin{array}{ccc}
P & \xrightarrow{\partial_P^-} & \partial P \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\partial P & \xleftarrow{\partial_P^+} & P
\end{array}$$
Globular Theories

- **Globular extension**: a category \mathcal{C} equipped with a functor $\mathcal{G} \to \mathcal{C}$ such that \mathcal{C} has the globular sums.

- **The initial globular extension** Θ^0: Explicitly, Θ^0 is the full subcategory of $\mathcal{B}\mathcal{G}$ whose objects are the pasting schemes.

- **Globular theory**: a globular extension \mathcal{C} such that the unique map $\Theta^0 \to \mathcal{C}$ is faithful and identity on objects.

Intuition: a globular theory \mathcal{C} contains pasting schemes with operations producing extra cells.

- **Reminder on Yoneda Lemma**: cells in $\mathcal{P} \leftrightarrow$ maps $D_n \to \mathcal{P}$ in \mathcal{C}.
Globular Theories

- **Globular extension**: a category \mathcal{C} equipped with a functor $\mathbb{G} \to \mathcal{C}$ such that \mathcal{C} has the globular sums.

- The initial globular extension: Θ_0
 Explicitly, Θ_0 is the full subcategory of \mathbb{G} whose objects are the pasting schemes.
Global Theories

- **Globular extension**: a category \mathcal{C} equipped with a functor $\mathcal{G} \to \mathcal{C}$ such that \mathcal{C} has the globular sums.

- The initial globular extension: Θ_0
 Explicitly, Θ_0 is the full subcategory of \mathcal{G} whose objects are the pasting schemes.

- **Globular theory**: a globular extension \mathcal{C} such that the unique map $\Theta_0 \to \mathcal{C}$ is faithful and identity on objects.
 Intuition: a globular theory \mathcal{C} contain pasting schemes with operations producing extra cells.
Globular Theories

- **Globular extension**: a category \mathcal{C} equipped with a functor $\mathcal{G} \to \mathcal{C}$ such that \mathcal{C} has the globular sums.

- The initial globular extension: Θ_0

 Explicitly, Θ_0 is the full subcategory of \mathcal{G} whose objects are the pasting schemes.

- **Globular theory**: a globular extension \mathcal{C} such that the unique map $\Theta_0 \to \mathcal{C}$ is faithful and identity on objects.

 Intuition: a globular theory \mathcal{C} contain pasting schemes with operations producing extra cells.

- Reminder on Yoneda Lemma: cells in $P \leftrightarrow$ maps $D^n \to P$ in \mathcal{C}
Given an object P in a globular theory C, a cell x is algebraic, if there are no non-trivial map $f : Q \rightarrow P$ in Θ_0 such that x is in the image of f.

Intuition: All maps in Θ_0 are monos \rightarrow algebraic $=$ “uses up” all the data in P.
Given an object P in a globular theory \mathcal{C}, a cell x is *algebraic*, if there are no non-trivial map $f : Q \to P$ in Θ_0 such that x is in the image of f.

Intuition: All maps in Θ_0 are monos \to algebraic $=$ “uses up” all the data in P.

A lift of a pair of parallel cells x,y of dimension n is a cell of dimension $n+1$ is a cell z such that $s(z) = x$ and $t(z) = y$.
Coherator for Globular Weak ω-categories

Given an object P in a globular theory \mathcal{C}, a cell x is algebraic, if there are no non-trivial map $f : Q \to P$ in Θ_0 such that x is in the image of f.

Intuition: All maps in Θ_0 are monos \rightarrow algebraic = “uses up” all the data in P.

A lift of a pair of parallel cells x, y of dimension n is a cell of dimension $n + 1$ is a cell z such that $s(z) = x$ and $t(z) = y$.

The coherator Θ_∞ is the globular theory constructed as follows

$$\Theta_\infty = \lim(\Theta_0 \to \Theta_1 \to \Theta_2 \to \ldots)$$

where Θ_{n+1} is formally obtained from Θ_n by universally adding a lift for every pair of cells (x, y) in P which either:

- write as $(\partial^-_X(x'), \partial^+_X(y'))$ with x', y' algebraic in ∂P
- are both algebraic in P

and for which a lift was not added at an earlier stage.
Weak ω-categories are presheaves over Θ_∞ that preserve the globular sums.

- Adding a lift for every pair (x,y) that factor as $\partial^- X(x')$, $\partial^+ X(y')$, with x', y' algebraic.
- There exists a cell witnessing the composition of X from x to y.

Any two compositions of X are related by a higher cell: weak uniqueness.

Existence + weak uniqueness related with contractibility in Topology/HoTT.
Weak ω-categories

- Weak ω-categories are presheaves over Θ_∞ that preserve the globular sums.

- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.
Weak ω-categories

- Weak ω-categories are presheaves over Θ_∞ that preserve the globular sums.

- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.

 - Adding a lift for every pair (x, y) that factor as $\partial^-_X(x'), \partial^+_X(y')$, with x', y' algebraic

 There exists a cell witnessing the composition of X from x to y

 - Adding a lift for every pair (x, y) that are algebraic

 Any two compositions of X are related by a higher cell: weak uniqueness
Weak ω-categories

- Weak ω-categories are presheaves over Θ_∞ that preserve the globular sums.

- Interpretation: Recall that pasting schemes should represent an (essentially) unique way of composing.

 - Adding a lift for every pair (x, y) that factor as $\partial^-_X(x'), \partial^+_X(y')$, with x', y' algebraic

 There exists a cell witnessing the composition of X from x to y

 - Adding a lift for every pair (x, y) that are algebraic

 Any two compositions of X are related by a higher cell: weak uniqueness

- Existence + weak uniqueness related with contractibility in Topology/HoTT.
We consider a weak ω-category X:

- A 0-cell x defines a map $x : D^0 \to X$. D^0 has a unique cell x', which is algebraic, hence the pair x', x' has a lift $\text{id}(x')$, which induces a 1-cell $\text{id}(x) : x \to x$ in X.

A diagram $x f \to y g \to z$ in X is an element of $X(D_1 \sqcup D_0 D_1 \sqcup D_0 D_1 \sqcup D_0 D_1)$ (preservation of globular sums).

$D_1 \sqcup D_0 D_1 \sqcup D_0 D_1 \sqcup D_0 D_1$ is given by $x' f' \to y' g' \to z' h'$, and x' is algebraic in the source, z' is algebraic in the target, so there exists a cell $f' \star_0 g' : x' \to z'$, whose image in X is $f \star_0 g : x \to z$.
We consider a weak ω-category X:

- A 0-cell x defines a map $x : D^0 \to X$. D^0 has a unique cell x', which is algebraic, hence the pair x', x' has a lift $\text{id}(x')$, which induces a 1-cell $\text{id}(x) : x \to x$ in X.

- A diagram $x \xrightarrow{f} y \xrightarrow{g} z$ in X is an element of $X(D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1)$ (preservation of globular sums). $D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1$ is given by $x' \xrightarrow{f'} y' \xrightarrow{g'} z'$, and x' is algebraic in the source, z' is algebraic in the target, so there exists a cell $f' \star_0 g' : x' \to z'$, whose image in X is $f \star_0 g : x \to z$.

Identities, Compositions, Associators
Identities, Compositions, Associators

We consider a weak ω-category X:

- A 0-cell x defines a map $x : D^0 \to X$. D^0 has a unique cell x', which is algebraic, hence the pair x', x' has a lift $\text{id}(x')$, which induces a 1-cell $\text{id}(x) : x \to x$ in X.

- A diagram $x \xrightarrow{f} y \xrightarrow{g} z$ in X is an element of $X(D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1)$ (preservation of globular sums). $D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1$ is given by $x' \xrightarrow{f'} y' \xrightarrow{g'} z'$, and x' is algebraic in the source, z' is algebraic in the target, so there exists a cell $f' \star_0 g' : x' \to z'$, whose image in X is $f \star_0 g : x \to z$.

- $D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1 \sqcup_{D^0} D^1$ is given by $x' \xrightarrow{f'} y' \xrightarrow{g'} z' \xrightarrow{h'} w'$, by the previous point, $f' \star_0 (g' \star_0 h')$ and $(f' \star_0 g') \star_0 h'$ both exist, are parallel and are algebraic, hence there exists a cell $\alpha_{f', g', h'} : f' \star_0 (g' \star_0 h') \to (f' \star_0 g') \star_0 h'$. For $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$ in X, this gives $\alpha_{f, g, h} : f \star_0 (g \star_0 h) \to (f \star_0 g) \star_0 h$.

Coherator for semi-cubical weak ω-categories
The category of semi-cubes □:

\[
\begin{align*}
0 & \rightarrow 1 & 1 & \rightarrow 2 & \cdots \\
\sigma_0 & \rightarrow -\sigma_1 & \rightarrow -\sigma_2 & \rightarrow \\
\tau_0 & \rightarrow -\tau_0 & \rightarrow -\tau_1 & \rightarrow -\tau_2 \\
\end{align*}
\]

\[\forall j < i, \begin{cases}
\sigma_j \sigma_i = \sigma_{i+1} \sigma_j \\
\sigma_j \tau_i = \tau_{i+1} \sigma_j \\
\tau_j \sigma_i = \sigma_{i+1} \tau_j \\
\tau_j \tau_i = \tau_{i+1} \tau_i \end{cases}\]
The category of semi-cubes □:

\[
\begin{align*}
0 \xrightarrow{\sigma_0} 1 & \xrightarrow{-\sigma_0} 2 \hdots \\
& \xrightarrow{-\sigma_1} 3 \\
& \xrightarrow{-\sigma_2} \hdots \\
\end{align*}
\]

\[\forall j < i, \left\{ \begin{array}{ll}
\sigma_j \sigma_i = \sigma_{i+1} \sigma_j & \sigma_j \tau_i = \tau_{i+1} \sigma_j \\
\tau_j \sigma_i = \sigma_{i+1} \tau_j & \tau_j \tau_i = \tau_{i+1} \tau_i \\
\end{array} \right. \]

Semi-cubical sets are presheaves on □:

\[
\begin{align*}
X_0 \xleftarrow{s_0} \xrightarrow{t_0} X_1 & \xleftarrow{s_0} \xrightarrow{t_0} \hdots \\
& \xleftarrow{s_1} \xrightarrow{t_1} \\
& \xleftarrow{s_2} \xrightarrow{t_2} \hdots \\
\end{align*}
\]

\[\forall j < i, \left\{ \begin{array}{ll}
s_i s_j = s_j s_{i+1} & t_i s_j = s_j t_{i+1} \\
s_i t_j = t_j s_{i+1} & t_i t_j = t_j t_{i+1} \\
\end{array} \right. \]
The category of semi-cubes □:

\[
\begin{align*}
0 & \xrightarrow{\sigma_0} 1 & -\sigma_1 \rightarrow & -\sigma_2 \rightarrow \\
& \xrightarrow{\tau_0} 2 & -\tau_1 \rightarrow & -\tau_2 \rightarrow \\
& \quad \cdots \\
& \forall j < i, \\
& \begin{cases}
\sigma_j \sigma_i = \sigma_{i+1} \sigma_j \\
\sigma_j \tau_i = \tau_{i+1} \sigma_j \\
\tau_j \sigma_i = \sigma_{i+1} \tau_j \\
\tau_j \tau_i = \tau_{i+1} \tau_i
\end{cases}
\end{align*}
\]

Semi-cubical sets are presheaves on □:

\[
\begin{align*}
X_0 & \xleftarrow{s_0} X_1 & s_1 \leftarrow & s_0 \leftarrow \\
& \xrightarrow{t_0} & t_0 \leftarrow & t_1 \leftarrow \\
& \quad \cdots \\
& \forall j < i, \\
& \begin{cases}
s_i s_j = s_j s_{i+1} \\
t_i s_j = s_j t_{i+1} \\
s_i t_j = t_j s_{i+1} \\
t_i t_j = t_{i+1} t_{i+1}
\end{cases}
\end{align*}
\]

\[
\begin{array}{ccccccc}
\cdot & & & & & & \\
\downarrow & & & & & & \\
\cdot & & & & & & \\
\downarrow & & & & & & \\
\cdot & & & & & & \\
\end{array}
\]
The representable semi-cubical sets are the *semi-cubes*

\[C^0 \rightarrow C^1 \rightarrow \cdots \rightarrow C^2 \rightarrow \cdots \rightarrow C^3 \]
The representable semi-cubical sets are the *semi-cubes*

\[
C^0 \cdot C^1 \rightarrow C^2 \downarrow \downarrow \\ \downarrow \downarrow \\
C^3
\]

Semi-cubical pasting schemes are rectangular grids

Example:
The representable semi-cubical sets are the *semi-cubes*

\[\cdots C^0 \rightarrow C^1 \rightarrow C^2 \rightarrow C^3 \cdots \]

Semi-cubical pasting schemes are rectangular grids

Example:

A semi-cubical pasting scheme \(P \) of dimension \(n \) has \(n \) boundary \(\partial_i P \), with maps

\(\partial_i^- P, \partial_i^+ P : \partial_i P \rightarrow P \), for \(0 \leq i < n \)
Define the *cubical sums*: diagrams for which pasting schemes are limits, and
cubical extension: a category C equipped with a functor $\square \to C$ such that C has
the cubical sums, with the initial cubical extension Θ_0^\square.
Define the *cubical sums*: diagrams for which pasting schemes are limits, and *cubical extension*: a category C equipped with a functor $\square \to C$ such that C has the cubical sums, with the initial cubical extension Θ_0.

Cubical theory: a cubical extension C such that the unique map $\Theta_0 \to C$ is faithful and identity on objects.

Intuition: a cubical theory C contain pasting schemes with operations producing extra cells.
Define the *cubical sums*: diagrams for which pasting schemes are limits, and *cubical extension*: a category C equipped with a functor $\square \to C$ such that C has the cubical sums, with the initial cubical extension Θ_0^\square.

Cubical theory: a cubical extension C such that the unique map $\Theta_0^\square \to C$ is faithful and identity on objects.

Intuition: a cubical theory C contain pasting schemes with operations producing extra cells.

A family of cells x_1, \ldots, x_n in an object P of a cubical theory are simultaneously algebraic if there are no non-trivial map $f : Q \to P$ in Θ_0^\square such that all the x_i are in the image of f.

A family of cells \((x_1, \ldots, x_n, y_1, \ldots, y_n)\) of dimension \(n - 1\) is \textit{compatible} if the cells fit in the boundary of an \(n\)-cube. A lift of a family of compatible cells \(x_1, \ldots, x_n, y_1, \ldots, y_n\) of dimension \(n - 1\) is a cell \(z\) of dimension \(n\) is a cell \(z\) such that \(s_i(z) = x_i\) and \(t_i(z) = y_i\).
Coherator for Semi-Cubical Weak ω-categories

- A family of cells $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ of dimension $n - 1$ is compatible if the cells fit in the boundary of an n-cube. A lift of a family of compatible cells $x_1, \ldots, x_n, y_1, \ldots, y_n$ of dimension $n - 1$ is a cell z of dimension n is a cell z such that $s_i(z) = x_i$ and $t_i(z) = y_i$.

- The coherator Θ_\square^∞ is the cubical theory constructed as follows

$$\Theta_\square^\infty = \lim(\Theta_0^\square \rightarrow \Theta_1^\square \rightarrow \Theta_2^\square \rightarrow \ldots)$$

where Θ_{n+1}^\square is formally obtained from Θ_n^\square by universally adding a lift for every compatible family of cells $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ in P, where either:

- we can decompose $x_i = \partial_{i,P}^- (x'_i)$ and $y_i = \partial_{i,P}^+ (y'_i)$ with x'_i, y'_i algebraic in $\partial_i P$
- both families (x_i) and (y_i) are algebraic in P

and for which a lift was not added at an earlier stage.
Semi-cubical weak ω-categories are presheaves over Θ_∞ that preserve the cubical sums.
Semi-cubical weak ω-categories are presheaves over Θ_∞ and preserve the cubical sums.

Consider a cubical weak ω-category X:

- For every 0-cell x, we can construct a 1-cell $\text{id}(x) : x \to x$
Semi-cubical weak ω-categories are presheaves over Θ^\square_∞ the preserve the cubical sums.

Consider a cubical weak ω-category X:

- For every 0-cell x, we can construct a 1-cell $\text{id}(x) : x \to x$
- For every diagram $x \xrightarrow{f} y \xrightarrow{g} z$, we can construct a 1-cell $f \star_0 g : x \to z$
Semi-cubical weak ω-categories are presheaves over Θ^\square_∞ that preserve the cubical sums.

Consider a cubical weak ω-category X:

- For every 0-cell x, we can construct a 1-cell $\text{id}(x) : x \to x$

- For every diagram $x \xrightarrow{f} y \xrightarrow{g} z$, we can construct a 1-cell $f \star_0 g : x \to z$

- For every diagram $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$, we can construct a 2-cell $f \star_0 g$.
For every diagram

\[
\begin{align*}
 x & \xrightarrow{f} y \\
 h & \downarrow \alpha \downarrow k \\
 x' & \xrightarrow{f'} y' \\
 h' & \downarrow \alpha' \downarrow k' \\
 x'' & \xrightarrow{f''} y''
\end{align*}
\]

we have a 2-cell

\[
\begin{align*}
 x & \xrightarrow{f} y \\
 h*0h' & \downarrow \alpha*1\alpha' \downarrow k*0k' \\
 x'' & \xrightarrow{f''} y''
\end{align*}
\]

\[
\Rightarrow \quad \begin{align*}
 (\alpha*1\alpha') & \xrightarrow{1} (\alpha*0\beta) \xrightarrow{1} (\alpha'\beta')
\end{align*}
\]
For every diagram \(x \xrightarrow{f} y \), we have a 2-cell \(h \downarrow \downarrow \alpha \downarrow k \).

For every diagram \(x' \xrightarrow{f'} y' \), we have a 2-cell \(h' \downarrow \downarrow \alpha' \downarrow k' \).

For every diagram \(x'' \xrightarrow{f''} y'' \), we have a 2-cell \(f'' \downarrow \downarrow k'' \).

For every diagram \(x \xrightarrow{f} y \xrightarrow{g} z \), we have a 2-cell \(h \downarrow \downarrow \alpha \downarrow k \downarrow \beta \downarrow l \).

For every diagram \(x \xrightarrow{f \ast 0 g} z \), we have a 2-cell \(h \downarrow \downarrow \alpha \downarrow k \downarrow \beta \downarrow l \).

For every diagram \(x' \xrightarrow{f'} y' \xrightarrow{g'} z' \), we have a 2-cell \(f' \downarrow \downarrow \beta \downarrow l \).

For every diagram \(x \xrightarrow{f \ast 0 g} z \), we have a 2-cell \(h \downarrow \downarrow \alpha \downarrow k \downarrow \beta \downarrow l \).
For every diagram
\[x \xrightarrow{f} y \xrightarrow{h} \xrightarrow{\downarrow \alpha} \xrightarrow{\downarrow k} \]
\[x' \xrightarrow{f'} y' \xrightarrow{h'} \xrightarrow{\downarrow \alpha'} \xrightarrow{\downarrow k'} \]
\[x'' \xrightarrow{f''} y'' \]
we have a 2-cell
\[x \xrightarrow{f} y \xrightarrow{h*0h'} \xrightarrow{\downarrow \alpha*1\alpha'} \xrightarrow{\downarrow k*0k'} \]
\[x'' \xrightarrow{f''} y'' \]

For every diagram
\[x \xrightarrow{f} y \xrightarrow{g} \xrightarrow{h} \xrightarrow{\downarrow \alpha} \xrightarrow{\downarrow k} \xrightarrow{\downarrow \beta} \xrightarrow{\downarrow l} \]
\[x' \xrightarrow{f'} y' \xrightarrow{g'} \xrightarrow{h'} \xrightarrow{\downarrow \alpha'} \xrightarrow{\downarrow k'} \xrightarrow{\downarrow \beta'} \xrightarrow{\downarrow l'} \]
\[x'' \xrightarrow{f''} y'' \xrightarrow{g''} \xrightarrow{h''} \xrightarrow{\downarrow \alpha''} \xrightarrow{\downarrow k''} \xrightarrow{\downarrow \beta''} \xrightarrow{\downarrow l''} \]
gives
\[(\alpha*_{1} \alpha')*_{0} (\beta*_{1} \beta') \Rightarrow (\alpha*_{0} \beta)*_{1} (\alpha'*_{0} \beta') \]
Interesting Note on Weak Degeneracies

For every 1-cell $x \xrightarrow{f} y$, one can construct two identity 2-cells

\[
\begin{array}{ccc}
 x & \xrightarrow{f} & y \\
 \downarrow \text{id}(x) & & \downarrow \text{id}(y) \\
 x & \xrightarrow{f} & y \\
\end{array}
\]

\[
\begin{array}{ccc}
 x & \xrightarrow{\text{id}(x)} & x \\
 \downarrow \text{id}_0(f) & & \downarrow f \\
 y & \xrightarrow{\text{id}(y)} & y \\
\end{array}
\]

and $\text{id}_1(f)$ have the same type, and are equivalent, but not strictly equal!
For every 1-cell $x \xrightarrow{f} y$, one can construct two identity 2-cells

$id_1(id(x))$ and $id_0(id(x))$ have the same type, and are equivalent, but not strictly equal!
Thank you!