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The smothering model structure

The generating cofibrations

We define a functor to be (stably) smothering if it has the RLP with
respect to the following inclusions:

∅ • •
• → •
• → • • → •

• • → •

• → •
↓ ↓
• → • • ≃ •

i0 i1 ic
i2
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The smothering model structure

The generating trivial cofibration

The fibrations are just the isofibrations, which
can be defined as having the RLP with respect to
the inclusion j pictured on the right.

•

• ≃ •

j
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The smothering model structure

The model structure

Proposition
There exists a model structure on Cat with:

fibrations the isofibrations
trivial fibrations the (stably) smothering functors
weak equivalences the weakly (stably) smothering functors

Hence, it is a right Bousfield localization of the natural model structure on
Cat that proves to be relevant in settings involving homotopy categories.
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The smothering model structure

Example

Proposition
Consider a pullback squares of quasicategories

A ×B E E

A Bf

p
⌟

where p is an isofibration.
Then the canonical functor

Ho(A ×B E ) → Ho(A) ×Ho(B) Ho(E )

is a weakly smothering.
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The smothering model structure

Example

Proposition
For M a model category, the canonical functors

Ho(M→→) → Ho(M→) ×Ho(M) Ho(M→)

and
Ho(M→) → Ho(M)→

are weakly smothering.
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Prederivators as a model for (∞, 1)-categories

Prederivators

Recall that a prederivator is a (strict) 2-functor from Catop (small cate-
gories) to CAT (large categories).

Example
For M a model category, the 2-functor

D : Catop → CAT
J 7→ Ho(MJ)

is a prederivator
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Prederivators as a model for (∞, 1)-categories

The transfered Reedy model structure

Proposition
There exists a right transfered model structure along the restriction functor

PDer(= CATCatop
) → CAT∆op

where ∆op is seen as a discrete 2-category.
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Prederivators as a model for (∞, 1)-categories

Complete Segal prederivator

Definition
A “Reedy fibrant” prederivator D is defined to be a Segal prederivator if
the canonical functors

D([n]) → D([1]) ×D([0]) ... ×D([0]) D([1])

is weakly smothering for every n ≥ 2.
If the canonical decoherence functor

D([1]) → D([0])→

is also weakly smothering, we will say that D is complete.
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Prederivators as a model for (∞, 1)-categories

The model structure

Proposition
There exists a left Bousfield localization of the transfered Reedy model
structure on PDer whose fibrant objects are the complete Segal
prederivators.

Theorem
The functor

Ob : PDerCSP → SSetJoyal

D 7→ Sn := Ob(D([n]))

is right Quillen and the induced right derived functor is an equivalence of
categories, thus providing a Quillen equivalence.
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Prederivators as a model for (∞, 1)-categories

Thank you for you attention!
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Prederivators as a model for (∞, 1)-categories
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