The smothering model structure and prederivators as $(\infty, 1)$ -categories Work in progress

El Mehdi Cherradi

IRIF - CNRS - Université Paris Cité, MINES ParisTech - Université PSL

7 June 2023

Outline

The smothering model structure

Prederivators as a model for $(\infty, 1)$ -categories

The generating cofibrations

We define a functor to be **(stably) smothering** if it has the RLP with respect to the following inclusions:

The generating trivial cofibration

The fibrations are just the **isofibrations**, which can be defined as having the RLP with respect to the inclusion j pictured on the right.

The model structure

Proposition

There exists a model structure on Cat with:

- fibrations the isofibrations
- trivial fibrations the (stably) smothering functors
- weak equivalences the weakly (stably) smothering functors

Hence, it is a right Bousfield localization of the natural model structure on **Cat** that proves to be relevant in settings involving homotopy categories.

Example

Proposition

Consider a pullback squares of quasicategories

where p is an isofibration. Then the canonical functor

$$Ho(A \times_B E) \rightarrow Ho(A) \times_{Ho(B)} Ho(E)$$

is a weakly smothering.

Example

Proposition

For ${\mathcal M}$ a model category, the canonical functors

$$\mathsf{Ho}(\mathcal{M}^{
ightarrow
ightarrow})
ightarrow \mathsf{Ho}(\mathcal{M}^{
ightarrow}) imes_{\mathsf{Ho}(\mathcal{M})} \mathsf{Ho}(\mathcal{M}^{
ightarrow})$$

and

$$\mathsf{Ho}(\mathcal{M}^{
ightarrow})
ightarrow \mathsf{Ho}(\mathcal{M})^{
ightarrow}$$

are weakly smothering.

Outline

2 Prederivators as a model for $(\infty, 1)$ -categories

Prederivators

Recall that a prederivator is a (strict) 2-functor from Cat^{op} (small categories) to CAT (large categories).

Example

For ${\mathcal M}$ a model category, the 2-functor

$$\mathbb{D}: \operatorname{\mathsf{Cat}}^{op} o \operatorname{\mathsf{CAT}}$$
 $J \mapsto \operatorname{\mathsf{Ho}}(\mathcal{M}^J)$

is a prederivator

The transfered Reedy model structure

Proposition

There exists a right transfered model structure along the restriction functor

$$\mathsf{PDer}(=\mathsf{CAT}^{\mathsf{Cat}^{op}}) o \mathsf{CAT}^{\Delta^{op}}$$

where Δ^{op} is seen as a discrete 2-category.

Complete Segal prederivator

Definition

A "Reedy fibrant" prederivator ${\rm I\!D}$ is defined to be a Segal prederivator if the canonical functors

$$\mathbb{D}([n]) \to \mathbb{D}([1]) \times_{\mathbb{D}([0])} ... \times_{\mathbb{D}([0])} \mathbb{D}([1])$$

is weakly smothering for every $n \ge 2$. If the canonical decoherence functor

 $\mathbb{D}([1]) \to \mathbb{D}([0])^{\to}$

is also weakly smothering, we will say that ${\mathbb D}$ is complete.

The model structure

Proposition

There exists a left Bousfield localization of the transfered Reedy model structure on **PDer** whose fibrant objects are the complete Segal prederivators.

Theorem

The functor

$$\mathbf{Ob}: \mathbf{PDer}_{CSP}
ightarrow \mathbf{SSet}_{Joyal}$$

 $\mathbb{D} \mapsto S_n := \mathbf{Ob}(\mathbb{D}([n]))$

is right Quillen and the induced right derived functor is an equivalence of categories, thus providing a Quillen equivalence.

Thank you for you attention!

References

D. Fuentes-Keuthan, M. Kedziorek, and M. Rovelli. A model structure on prederivators for $(\infty, 1)$ -categories. *arXiv preprint arXiv:1810.06496*, 2018.

M. Groth.

On the theory of derivators. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2011.

P. S. Hirschhorn.

Model categories and their localizations. Number 99. American Mathematical Soc., 2003.

- A. Joyal and M. Tierney.
 Quasi-categories vs segal spaces.
 Contemporary Mathematics, 431(277-326):10, 2007.
- E. Riehl and D. Verity. Elements of ∞-Category Theory, volume 194. Cambridge University Press, 2022.