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Linear Logic

Girard’s LL (1986): most (all?) denotational models have an
underlying structure similar to linear algebra

• tensor product

• linear function spaces

• direct product and coproduct

• duality.

There are also non linear morphisms.

Exponential resource modality : connects the linear and non-linear
worlds (categories).

Dereliction: we can forget that a function is linear.
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Differentiation in LL

Introduces a converse operation.

• dereliction: forget linearity of a morphism
linear ⇝ non-linear

• differentiation: best linear approximation of a morphism
non-linear ⇝ linear

reformulating logically the standard laws of the differential calculus.
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⇝ the differential λ-calculus:

Γ ⊢ M : A ⇒ B Γ ⊢ N : A

Γ ⊢ DM · N : A ⇒ B

And DM · N is linear in N (and also in M).

Intuition

The derivative of M should be M ′ : A ⇒ (A⊸ B). Then
intuitively

DM · N = λx : A · (M ′ x)(N)



Strong non-determinism of DiLL

Requires apparently a deduction rule

Γ ⊢ M : A Γ ⊢ N : A
(+)

Γ ⊢ M +N : A

for Leibniz

df (x , x)

dx
· u = f ′1(x , x) · u + f ′2(x , x) · u

Interaction between differentiation and contraction.
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⇝ models of DiLL are additive categories

Leibniz ⇝ the models L of DiLL are additive categories:

• L(X ,Y ) is a commutative monoid (with additive notations)
for each objects X ,Y of L

• morphism composition is bilinear.

Remark

If L is cartesian and additive then the cartesian product is also a
coproduct, the terminal object is initial: & = ⊕.

⇝ some LL degeneracy = non-determinism.
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But. . .

. . . many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the
linear/non-linear dichotomy does not require additivity.

In probabilistic coherence spaces (Pcoh) non-linear morphisms are
obviously differentiable: they are analytic functions,

and Pcoh is not an additive category.

Question

Analytic functions have derivatives: what is the status of
derivatives in such models?

At first sight they seem to live outside. . .
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. . . a concrete example

In Pcoh the type 1 of LL is interpreted as

[0, 1] ⊆ R

A non-linear morphism, that is, an element of L!(1, 1), is an
analytic function

f : [0, 1] → [0, 1]

x 7→
∞∑
n=0

anx
n

for a (uniquely determined) sequence (an)n∈N of elements of R≥0

such that
∑

n∈N an ≤ 1.

Problem

f ′(x) =
∑∞

n=0(n + 1)an+1x
n has no reason to satisfy f ′ ∈ L!(1, 1).
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For instance: f defined by f (x) = 1−
√
1− x belongs to

Pcoh!(1, 1)

but

f ′(x) =
1

2
√
1− x

is not even defined on the whole of [0, 1] and is not bounded on
[0, 1). . .

. . . and we cannot reject f because it is the interpretation of a
program!
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Key observation, part 1

If f ∈ Pcoh!(1, 1) and

x , u ∈ [0, 1] satisfy x + u ∈ [0, 1]

then by the Taylor formula at x

f (x + u) = f (x) + f ′(x)u +
1

2
f ′′(x)u2 + · · · ∈ [0, 1]

and all these derivatives are ≥ 0, so we have

f (x) + f ′(x)u ∈ [0, 1] .
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So if we set S = {(x , u) ∈ [0, 1]2 | x + u ∈ [0, 1]} we can define

Df : S → S

(x , u) 7→ (f (x), f ′(x)u)

similar to Tf , the tangent bundle functor.

Key observation, part 2

S can be seen as an object of Pcoh and

∀f ∈ Pcoh!(1, 1) Df ∈ Pcoh!(S ,S)

Can be extended to all the objects of Pcoh, not only 1.

⇝ Coherent Differentiation
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An important case of coherent differentiation:
the elementary situation



Summability in a linear category

Assume:

• L is a SMCC, tensor X ⊗ Y , tensor unit 1, internal hom
L(Z ⊗ X ,Y ) ≃ L(Z ,X ⊸ Y );

• L has 0-morphisms 0 ∈ L(X ,Y ) with 0 t = 0 and t 0 = 0;

• L is cartesian, cartesian product &i∈I Xi with projections pri
and if (ti ∈ L(Y ,Xi ))i∈I then ⟨ti ⟩i∈I ∈ L(Y ,&i∈I Xi ).

We don’t assume L to be additive.

Remark (some sums do exist)

⟨Id1, 0⟩, ⟨0, Id1⟩ ∈ L(1, 1 & 1)
have a sum ⟨Id1, 0⟩+ ⟨0, Id1⟩ = ⟨Id1, Id1⟩ ∈ L(1, 1 & 1).
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The functor of summable pairs

S : L → L given by

SX = (1 & 1⊸ X )

Intuition

A “point” of SX is a pair of two points of X whose sum is well
defined.

• π0 = (⟨Id1, 0⟩⊸ X ) ∈ L(SX ,X ) fst component of pairs

• π1 = (⟨0, Id1⟩⊸ X ) ∈ L(SX ,X ) snd component of pairs

• σ = (⟨Id1, Id1⟩⊸ X ) ∈ L(SX ,X ) sum of pairs.
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Assume ⟨Id1, 0⟩, ⟨0, Id1⟩ ∈ L(1, 1 & 1) are jointly epic and hence
π0, π1 ∈ L(SX ,X ) are jointly monic: this is a property of L which
holds very often.

Definition (summability and sum of morphisms)

f0, f1 ∈ L(Y ,X ) are summable if there is h ∈ L(Y ,SX ) such that
πi h = fi (i = 0, 1).

This h is unique: ⟨f0, f1⟩S = h (witness of summability).

f0 + f1 = σ ⟨f0, f1⟩S.

Fact

If L satisfies an additional witness property then, equipped with 0
and +, each L(X ,Y ) is a commutative partial monoid.

Composition is compatible with this structure.
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Comonoid structure of 1 & 1

When L satisfies these conditions, 1 & 1 has a structure of
commutative comonoid

pr0 : 1 & 1 → 1 fst projection of &

L̃ : 1 & 1 → (1 & 1)⊗ (1 & 1)

fully characterized by

L̃ ⟨Id1, 0⟩ = ⟨Id1, 0⟩ ⊗ ⟨Id1, 0⟩

L̃ ⟨0, Id1⟩ = ⟨Id1, 0⟩ ⊗ ⟨0, Id1⟩ + ⟨0, Id1⟩ ⊗ ⟨Id1, 0⟩

NB: this sum is well defined (by the witness assumption).

Remember that ⟨Id1, 0⟩ and ⟨0, Id1⟩ are jointly epic.
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Exponential

Assume that L is equipped with a resource modality, that is

• a comonad (! , der, dig)

• with a symmetric monoidal structure from (L,&) to (L,⊗):
there are well-behaved isos 1 → !⊤ and !X ⊗ !Y → !(X & Y ).

Then the Kleisli category L! is intuitively the category of non-linear
morphisms that we will differentiate.

• Obj(L!) = Obj(L)
• L!(X ,Y ) = L(!X ,Y ).
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Differential structure

Definition

A differential structure on L is a !-coalgebra structure ∂̃ on 1 & 1:

∂̃ : 1 & 1 → !(1 & 1)

such that pr0 and L̃ are coalgebra morphisms.

Remark (CD is everywhere. . . )

If (L, ! ) is a Lafont category (ie. ! is the cofree symmetric
comonoid functor) there is exactly one differential structure,
induced by (pr0, L̃).
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What is the link with differentiation?

Using ∂̃ we can define a natural transformation
∂X : !SX = !(1 & 1⊸ X ) → S!X = (1 & 1⊸ !X ),

Curry transpose of

!(1 & 1⊸ X )⊗ (1 & 1)

!(1 & 1⊸ X )⊗ !(1 & 1)

!((1 & 1⊸ X )⊗ (1 & 1))

!X

Id⊗∂̃

µ2

!ev

µ2: lax monoidality ⊗ → ⊗, derived from the monoidality &→ ⊗.
ev: evaluation morphism.
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Fact (extending S to L! thanks to ∂ ⇝ differentiation functor)

∂X : !SX → S!X is a distributive law.

If t ∈ L!(X ,Y ) = L(!X ,Y ) seen as a non-linear morphism X → Y
then

Dt = (St) ∂X ∈ L!(SX ,SY )

can be understood intuitively as mapping (x , u) ∈ SX (that is
x , u ∈ X summable) to (t(x), t ′(x) · u) ∈ SY , a summable pair.

D is a functor (chain rule).
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The simplest example: strict coherence spaces



Strict Coherence Spaces (SCS): a simplified version of Girard’s
coherence spaces due du F. Lamarche (1995).

E = (|E |,˝E ) where |E | is a set (web) and ˝E is a binary and
symmetric relation on |E | (not required to be reflexive nor
anti-reflexive).

Cl(E ) = {x ⊆ |E | | ∀a, a′ ∈ x a ˝E a′}.
E ⊸ F defined by |E ⊸ F | = |E | × |F | and (a, b) ˝E⊸F (a′, b′) if
a ˝E b ⇒ a′ ˝F b′.

Category Scoh: objects are the strict coherence spaces and
Scoh(E ,F ) = Cl(E ⊸ F ) ⊆ |E | × |F |.
Composition: relational composition. Identity: diagonal relation.
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The SMC structure of SCS

• |1| = {∗} with ∗ ˝1 ∗
• |E ⊗ F | = |E | × |F | and (a, b) ˝E⊗F (a′, b′) if a ˝E a′ and

b ˝F b′.

• SMCC: Scoh(G ⊗ E ,F ) ≃ Scoh(G ,E ⊸ F ) trivially maps t
to {(c , (a, b)) | ((c , a), b) ∈ t}.
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Cartesian product

• |&i∈I Ei | =
⋃

i∈I{i} × |Ei |
• (i , a) ˝&i∈I Ei

(j , b) if i = j ⇒ a ˝Ei
b.

• So that in particular Cl(&i∈I Ei ) ≃
∏

i∈I Cl(Ei ).

Fact

|1 & 1| = {0, 1} with i ˝1&1 j for all i , j ∈ {0, 1}, so that
Cl(1 & 1) = P ({0, 1}).
⟨Id1, 0⟩ = {(∗, 0)} and ⟨0, Id1⟩ = {(∗, 1)} are trivially jointly epic.

Cl(SE ) = Cl(1 & 1⊸ E ) ≃ {(x0, x1) ∈ Cl(E )2 | x0 ∪ x1 ∈ Cl(E )}
s0, s1 ∈ Scoh(E ,F ) are summable iff s0 ∪ s1 ∈ Scoh(E ,F ) and
then s0 + s1 = s0 ∪ s1.
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Intermezzo: duality and booleans

Scoh is a model of classical LL: take |E⊥ | = |E | and a ˝E⊥ b if
¬(a ˝E b). Then E⊥⊥ = E .

So Scoh has coproducts, in particular 1⊕ 1 = (1⊥ & 1⊥)⊥

(notice that 1⊥ ̸= 1 contrarily to Girard’s CS!).

Cl(1⊕ 1) = {∅, {0}, {1}} so {0} and {1} are not summable in
1⊕ 1 (though they are summable in 1 & 1): the category Scoh is
not additive.

Remark (SCS are not a stable model)

Contrarily to Girard’s CS, SCS accept the parallel or program.
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Comonoid structure of 1 & 1

Remember

• |1| = {∗} and ∗ ˝1 ∗
• |1 & 1| = {0, 1} with i ˝1&1 j for all i , j ∈ {0, 1}, so that
Cl(1 & 1) = P ({0, 1}).

1 & 1 as a comonoid

• counit: pr0 = {(0, ∗) ∈ Scoh(1 & 1, 1)}
• comultiplication: L̃ ∈ Scoh(1 & 1, (1 & 1)⊗ (1 & 1)) given by

L̃ = {(0, (0, 0))} ∪ {(1, (0, 1)), (1, (1, 0))}
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The cofree exponential: Scoh is Lafont

Much simpler than the exponential of Lamarche who insisted on
|!E | ⊆ Pfin(|E |).

Instead we use finite multisets: |!E | = Mfin(|E |) and

[a1, . . . , an] ˝!E [b1, . . . , bk ] if ∀i , j ai ˝E bj .

Then ∂̃ ∈ Scoh(1 & 1, !(1 & 1)) is

∂̃ = {(i , [i1, . . . , ik ]) | i , i1, . . . , ik ∈ {0, 1} and i = i1 + · · ·+ ik}

that is

• either i = 0 and all the ij ’s are = 0

• or i = 1 and all the ij ’s = 0 but one which = 1.
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Induced differentiation

Remember that SE = (1 & 1⊸ E ).

So that |SE | = {0, 1} × |E | and (i , a) ˝SE (j , b) ⇔ a ˝E b.

Given t ∈ Scoh(!E ,F ) we get Dt ∈ Scoh(!SE ,SF ). Remember
that intuitively

Dt(x , u) = (t(x), t ′(x) · u) .

Fact

Dt = {([(0, a1, . . . , (0, an)], (0, b)) | ([a1, . . . , an], b) ∈ t}
∪ {([(0, a1, . . . , (0, an), (1, a)], (1, b)) | ([a1, . . . , an, a], b) ∈ t}
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Conclusion

• We are developing the general theory of coherent
differentiation with Aymeric Walch (PhD thesis).

• In particular, there is a purely “cartesian theory” of CD
without references to LL.

• There is also a syntactic version of CD, a “CD PCF” which
• has a differentiation operation at all types
• as well as general recursion (fixpoint operators at all types)
• and features at the same time a fully deterministic operational

semantics.

It was impossible to have all these features in the differential
λ-calculus.
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