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Linear Logic

Girard's LL (1986): most (all?) denotational models have an
underlying structure similar to linear algebra

® tensor product

® Jinear function spaces

direct product and coproduct

duality.

There are also non linear morphisms.

Exponential resource modality: connects the linear and non-linear
worlds (categories).

Dereliction: we can forget that a function is linear.
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Differentiation in LL

Introduces a converse operation.

® dereliction: forget linearity of a morphism
linear ~» non-linear

e differentiation: best linear approximation of a morphism
non-linear ~~ linear

reformulating logically the standard laws of the differential calculus.



~ the differential \-calculus:

rMN-M:A=B TFN:A
rN-bM-N:A=B

And DM - N is linear in N (and also in M).

Intuition

The derivative of M should be M" : A= (A — B). Then
intuitively

DM-N=Xx:A- (M x)(N)
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Strong non-determinism of DiLL

Requires apparently a deduction rule

rMN-M:A TEN:A

_ (+H)
rEM+N:A

for Leibniz

df (x, x)

dx 'U:f;{(X,X)-U—f—fz’(X,X)'U

Interaction between differentiation and contraction.
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~» models of DiLL are additive categories

Leibniz ~~ the models £ of DiLL are additive categories:

® L(X,Y) is a commutative monoid (with additive notations)
for each objects X, Y of L

® morphism composition is bilinear.

If £ is cartesian and additive then the cartesian product is also a
coproduct, the terminal object is initial: & = @.

~» some LL degeneracy = non-determinism.
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But. ..

... many interesting models of LL are not additive categories.
One of the main new ideas brought by LL is that the
linear/non-linear dichotomy does not require additivity.

In probabilistic coherence spaces (Pcoh) non-linear morphisms are
obviously differentiable: they are analytic functions,

and Pcoh is not an additive category.

Question

Analytic functions have derivatives: what is the status of
derivatives in such models?

At first sight they seem to live outside. ..
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a concrete example
In Pcoh the type 1 of LL is interpreted as
[0,1]CR

A non-linear morphism, that is, an element of £(1,1), is an
analytic function

f: [0,1] — [0, 1]
X Z anx"
n=0

for a (uniquely determined) sequence (ap)nen of elements of R>g

such that ) _yan, < L.

Problem
f'(x) = 302 o(n+ 1)ap11x" has no reason to satisfy f' € £,(1,1).
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For instance: f defined by f(x) =1 — /1 — x belongs to
Pcoh(1,1)
but

1
2v1 —x

is not even defined on the whole of [0, 1] and is not bounded on
[0,1)...

f'(x) =



For instance: f defined by f(x) =1 — /1 — x belongs to
Pcoh(1,1)
but

1
2y1—x
is not even defined on the whole of [0, 1] and is not bounded on
[0,1)...

. and we cannot reject f because it is the interpretation of a
program!

f'(x) =
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Key observation, part 1
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Key observation, part 1

If f € Pcoh(1,1) and
x,u € [0,1] satisfy x + u € [0, 1]
then by the Taylor formula at x
1
f(x+u)=f(x)+f(x)u+ 51‘"(x)u2 +---€10,1]
and all these derivatives are > 0, so we have

f(x)+ f'(x)u €]0,1].



So if we set S = {(x,u) €[0,1]? | x + u € [0,1]} we can define

Df:5S5— 5
(x, u) = (F(x), f'(x)u)

similar to Tf, the tangent bundle functor.



So if we set S = {(x,u) €[0,1]? | x + u € [0,1]} we can define

Df:5S5— 5
(x, u) = (F(x), f'(x)u)

similar to Tf, the tangent bundle functor.

Key observation, part 2

S can be seen as an object of Pcoh and

Vf € Pcoh(1,1) Df € Pcohy(S,S)

Can be extended to all the objects of Pcoh, not only 1.

~+ Coherent Differentiation



An important case of coherent differentiation:
the elementary situation
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Summability in a linear category

Assume:

® [ isa SMCC, tensor X ® Y, tensor unit 1, internal hom
LIZ@X,Y)~L(Z,X —Y);
® £ has 0-morphisms 0 € £(X,Y) with 0t =0 and t0 =0;

® [ is cartesian, cartesian product &< X; with projections pr;
and if (t,' S ,C(Y,X,')),'e[ then (t,'>,'€[ S ,C(Y,&,'E/ X,').
We don't assume L to be additive.

Remark (some sums do exist)

(Id1,0), (0,1d;) € £(1,1 & 1)
have a sum (Id1,0) + (0,Id1) = (Id1,1d1) € £(1,1 & 1).
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The functor of summable pairs

S: L — L given by

SX=(1&1—X)

Intuition

A “point” of SX is a pair of two points of X whose sum is well
defined.

® 19 = ((Id1,0) — X) € L(SX, X) fst component of pairs
e 11 =((0,ld1) — X) € L(SX, X) snd component of pairs
® o= ((ldy,ld1) — X) € L(SX, X) sum of pairs.
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Assume (ld1,0), (0,1d1) € £(1,1 & 1) are jointly epic and hence
mo, m1 € L(SX, X) are jointly monic: this is a property of £ which
holds very often.

Definition (summability and sum of morphisms)

fo,fi € L(Y, X) are summable if there is h € L(Y,SX) such that
mi h=1f (i=0,1).

This h is unique: (fy, fi)s = h (witness of summability).
fo+f = o (fo, fi)s.

Fact

If L satisfies an additional witness property then, equipped with 0
and +, each L(X,Y) is a commutative partial monoid.

Composition is compatible with this structure.



Comonoid structure of 1 & 1

When L satisfies these conditions, 1 & 1 has a structure of
commutative comonoid

pro:1&1—1 fst projection of &
Li1&1—(1&1)®(1&1)

fully characterized by

L (Idy,0) = (Id1,0) ® (Idy,0)

L (0,1d1) = (Id1,0) ® (0, 1d1) + (0,1d1) ® (ldy,0)



Comonoid structure of 1 & 1
When L satisfies these conditions, 1 & 1 has a structure of
commutative comonoid

pro:1&1—1 fst projection of &
Li1&1—(1&1)®(1&1)

fully characterized by

L (Idy,0) = (Idy,0) ® (Idy,0)
L (0,1d1) = (Id1,0) ® (0, 1d;) + (0,1d1) ® (Idy,0)

NB: this sum is well defined (by the witness assumption).

Remember that (Id;,0) and (0, Id;) are jointly epic.
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Exponential

Assume that £ is equipped with a resource modality, that is
® a comonad (!_, der, dig)

¢ with a symmetric monoidal structure from (£, &) to (£, ®):
there are well-behaved isos 1 — I'T and IX®!Y — (X & Y).

Then the Kleisli category L, is intuitively the category of non-linear
morphisms that we will differentiate.

* Obj(£:) = Obj(L)
o Li(X,Y)=L(X,Y).
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Differential structure

Definition

A differential structure on L is a !-coalgebra structure donl&l:
:1&1—-1(1&1)
such that pry and L are coalgebra morphisms.

Remark (CD is everywhere. . .)

If (£,!) is a Lafont category (ie. !_ is the cofree symmetric
comonoid functor) there is exactly one differential structure,
induced by (prg, L).



What is the link with differentiation?

Using d we can define a natural transformation
Ox :1ISX=11&1—-oX)—=>SIX=(1&1—!X),



What is the link with differentiation?

Using d we can define a natural transformation
Ox :1ISX=11&1—-oX)—=>SIX=(1&1—!X),
Curry transpose of

(1&1— X)®(1&1)

J1aed
(1&1—oX)®!(1&1)

be

(1& 1 — X) ® (1 &1))

v

IX

12 lax monoidality ® — ®, derived from the monoidality & — ®.
ev: evaluation morphism.
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Fact (extending S to £, thanks to 0 ~~ differentiation functor)

Ox : 1ISX — SIX is a distributive law.
Ift e Li(X,Y)=L(X,Y) seen as a non-linear morphism X — Y
then
Dt = (St) 0x € Li(SX,SY)
can be understood intuitively as mapping (x, u) € SX (that is
x,u € X summable) to (t(x),t'(x) - u) € SY, a summable pair.

D is a functor (chain rule).
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Strict Coherence Spaces (SCS): a simplified version of Girard's
coherence spaces due du F. Lamarche (1995).

E = (|E|, ~g) where |E]| is a set (web) and ~f is a binary and
symmetric relation on |E| (not required to be reflexive nor
anti-reflexive).

CI(E)={xC |E||Va,d € xa~g d'}.

E —o F defined by |E —o F| = |E| x |F| and (a, b) ~£_r (2, b') if
a~E b= 4 ~F b.

Category Scoh: objects are the strict coherence spaces and
Scoh(E,F) = CI(E — F) C |E| x |F|.

Composition: relational composition. Identity: diagonal relation.
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o |1 = {*} with x ~y %
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b~fb.



The SMC structure of SCS

o |1 = {*} with x ~y %

® |[E® F|=|E| x |F| and (a,b) ~ggr (a',b") if a ~g & and
b~fb.

® SMCC: Scoh(G ® E, F) ~ Scoh(G, E —o F) trivially maps t
to {(c,(a,b)) | ((c,a),b) € t}.
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Cartesian product

® |&ier Ei| = Uie i} x |Eil
° (i,a) ~g g U b)ifi=j=a~gb
® So that in particular Cl(&;c/ E;) ~ [];c; CI(Ei).

|1 & 1| ={0,1} with i ~1g1 Jj for all i,j € {0,1}, so that
CI(1 & 1) = P ({0,1}).

(Id1,0) = {(*,0)} and (0,Id1) = {(*,1)} are trivially jointly epic.
CI(SE) =CI(1 & 1 — E) =~ {(x0,x1) € CI(E)? | xo U x1 € CI(E)}

s0, 51 € Scoh(E, F) are summable iff sy U s; € Scoh(E, F) and
then sop + s1 = sp U s1.
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Intermezzo: duality and booleans

Scoh is a model of classical LL: take |E*| = |E| and a ~g. b if
—(a ~g b). Then E++ =E.

So Scoh has coproducts, in particular 1© 1 = (1+ & 1+)*+
(notice that 1+ # 1 contrarily to Girard’s CS!).

Cl(1®1) ={0,{0},{1}} so {0} and {1} are not summable in
1@ 1 (though they are summable in 1 & 1): the category Scoh is
not additive.

Remark (SCS are not a stable model)

Contrarily to Girard's CS, SCS accept the parallel or program.



Comonoid structure of 1 & 1

Remember
o |1| = {x} and x ~ %
® |1&1|={0,1} with i ~1g7 j for all i,j € {0,1}, so that
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Comonoid structure of 1 & 1

Remember
o |1| = {x} and x ~ %
® [1& 1| ={0,1} with i ~1g7 j for all i,j € {0,1}, so that
Cl(1& 1) =P ({0,1}).

1& 1 as a comonoid

® counit: pry = {(0,*) € Scoh(1 & 1,1)}
e comultiplication: L € Scoh(1 & 1,(1 & 1) ® (1 & 1)) given by

L ={(0,(0,0))} U{(1,(0,1)), (L, (1,0))}
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The cofree exponential: Scoh is Lafont

Much simpler than the exponential of Lamarche who insisted on
'E| C Prn(|E]).

Instead we use finite multisets: |'E| = Mg, (|E]) and

[al,...,a,,] NE [bl,...,bk] if VI,J ai ~NE bj

Then 8 € Scoh(1 & 1,1(1 & 1)) is
O ={(lir,- - ik]) | ivit,. . ik € {0,1} and i = iy + - + ik}

that is
® either i = 0 and all the Jj;'s are =0
® or i =1 and all the i;'s = 0 but one which = 1.
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Induced differentiation

Remember that SE = (1 & 1 — E).
So that [SE| ={0,1} x |E| and (i,a) ~se (j,b) < a ~g b.

Given t € Scoh(!E, F) we get Dt € Scoh(!SE,SF). Remember
that intuitively

Dt(x, u) = (t(x),t'(x) - u).

Dt = {([(0, a1,...,(0,a,)],(0,b)) | ([a1,---,an], b) € t}
UA{([(0, a1,...,(0,an),(1,a)],(1,b)) | ([21,-- -, an, a], b) € t}
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Conclusion

® We are developing the general theory of coherent
differentiation with Aymeric Walch (PhD thesis).

® In particular, there is a purely “cartesian theory” of CD
without references to LL.
® There is also a syntactic version of CD, a “CD PCF" which

® has a differentiation operation at all types

® as well as general recursion (fixpoint operators at all types)

® and features at the same time a fully deterministic operational
semantics.

It was impossible to have all these features in the differential
A-calculus.
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