Coherent differentiation

LHC days 2023

7 June

Thomas Ehrhard
IRIF, CNRS, Inria and Université Paris Cité
Linear Logic

Girard’s LL (1986): most (all?) denotational models have an underlying structure similar to *linear algebra*

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.
Girard’s LL (1986): most (all?) denotational models have an underlying structure similar to linear algebra

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.

Exponential resource modality: connects the linear and non-linear worlds (categories).
Girard’s LL (1986): most (all?) denotational models have an underlying structure similar to *linear algebra*

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.

Exponential resource modality: connects the linear and non-linear worlds (categories).

Dereliction: we can forget that a function is linear.
Differentiation in LL

Introduces a converse operation.

- dereliction: forget linearity of a morphism
 linear \rightsquigarrow non-linear
Differentiation in LL

Introduces a converse operation.

- dereliction: forget linearity of a morphism
 linear \rightsquigarrow non-linear

- differentiation: best linear approximation of a morphism
 non-linear \rightsquigarrow linear
Differentiation in LL

Introduces a converse operation.

- dereliction: forget linearity of a morphism
 linear \rightsquigarrow non-linear

- differentiation: best linear approximation of a morphism
 non-linear \rightsquigarrow linear

reformulating logically the standard laws of the differential calculus.
the differential λ-calculus:

$$\Gamma \vdash M : A \Rightarrow B \quad \Gamma \vdash N : A$$

$$\Gamma \vdash DM \cdot N : A \Rightarrow B$$

And $DM \cdot N$ is linear in N (and also in M).

Intuition

The derivative of M should be $M' : A \Rightarrow (A \rightarrow B)$. Then intuitively

$$DM \cdot N = \lambda x : A \cdot (M' x)(N)$$
Strong non-determinism of DiLL

Requires apparently a deduction rule

$$\Gamma \vdash M : A \quad \Gamma \vdash N : A$$

$$\Gamma \vdash M + N : A$$ (++)
Strong non-determinism of DiLL

Requires apparently a deduction rule

\[
\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : A}{\Gamma \vdash M + N : A}
\] (+)

for Leibniz

\[
\frac{df(x, x)}{dx} \cdot u = f'_1(x, x) \cdot u + f'_2(x, x) \cdot u
\]

Interaction between differentiation and contraction.
models of DiLL are additive categories

Leibniz the models \mathcal{L} of DiLL are additive categories:

- $\mathcal{L}(X, Y)$ is a commutative monoid (with additive notations) for each objects X, Y of \mathcal{L}
- morphism composition is bilinear.
models of DiLL are additive categories

Leibniz the models \mathcal{L} of DiLL are additive categories:

- $\mathcal{L}(X, Y)$ is a commutative monoid (with additive notations) for each objects X, Y of \mathcal{L}
- morphism composition is bilinear.

Remark

If \mathcal{L} is cartesian and additive then the cartesian product is also a coproduct, the terminal object is initial: $\& = \oplus$.

some LL degeneracy $=\nonneg$ non-determinism.
... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.
But... many interesting models of LL are not additive categories.

Remark
One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In probabilistic coherence spaces (\(\text{Pcoh}\)) non-linear morphisms are obviously differentiable: they are analytic functions,
But... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In *probabilistic coherence spaces* (\mathbf{Pcoh}) non-linear morphisms are obviously differentiable: they are analytic functions, and \mathbf{Pcoh} is not an additive category.
But... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In *probabilistic coherence spaces* (Pcoh) non-linear morphisms are obviously differentiable: they are analytic functions, and Pcoh is not an additive category.

Question

Analytic functions have derivatives: what is the status of derivatives in such models?
But...

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In probabilistic coherence spaces (P_{coh}) non-linear morphisms are obviously differentiable: they are analytic functions, and P_{coh} is not an additive category.

Question

Analytic functions have derivatives: what is the status of derivatives in such models?

At first sight they seem to live outside...
... a concrete example

In P_{coh} the type 1 of LL is interpreted as

$$[0, 1] \subseteq \mathbb{R}$$
... a concrete example

In \mathbf{Pcoh} the type 1 of LL is interpreted as

$$[0, 1] \subseteq \mathbb{R}$$

A non-linear morphism, that is, an element of $\mathcal{L}(1, 1)$, is an analytic function

$$f : [0, 1] \rightarrow [0, 1]$$

$$x \mapsto \sum_{n=0}^{\infty} a_n x^n$$
... a concrete example

In \textbf{Pcoh} the type 1 of LL is interpreted as

$$[0, 1] \subseteq \mathbb{R}$$

A non-linear morphism, that is, an element of $\mathcal{L}_!(1, 1)$, is an analytic function

$$f : [0, 1] \rightarrow [0, 1]$$

$$x \mapsto \sum_{n=0}^{\infty} a_n x^n$$

for a (uniquely determined) sequence $(a_n)_{n \in \mathbb{N}}$ of elements of $\mathbb{R}_{\geq 0}$ such that $\sum_{n \in \mathbb{N}} a_n \leq 1$.
... a concrete example

In \textbf{Pcoh} the type 1 of LL is interpreted as

\[[0, 1] \subseteq \mathbb{R} \]

A non-linear morphism, that is, an element of \(\mathcal{L}_!(1, 1) \), is an analytic function

\[f : [0, 1] \rightarrow [0, 1] \]

\[x \mapsto \sum_{n=0}^{\infty} a_n x^n \]

for a (uniquely determined) sequence \((a_n)_{n \in \mathbb{N}} \) of elements of \(\mathbb{R}_{\geq 0} \) such that \(\sum_{n \in \mathbb{N}} a_n \leq 1 \).

\textbf{Problem}

\[f'(x) = \sum_{n=0}^{\infty} (n + 1) a_{n+1} x^n \] has no reason to satisfy \(f' \in \mathcal{L}_!(1, 1) \).
For instance: f defined by $f(x) = 1 - \sqrt{1 - x}$ belongs to $\mathbf{P}_{\text{coh}}(1, 1)$
For instance: f defined by $f(x) = 1 - \sqrt{1-x}$ belongs to $\mathcal{P}_{\text{coh}}(1, 1)$ but

$$f'(x) = \frac{1}{2\sqrt{1-x}}$$

is not even defined on the whole of $[0, 1]$ and is not bounded on $[0, 1)$. . .
For instance: f defined by $f(x) = 1 - \sqrt{1-x}$ belongs to $P_{coh}(1,1)$ but

$$f'(x) = \frac{1}{2\sqrt{1-x}}$$

is not even defined on the whole of $[0, 1]$ and is not bounded on $[0, 1)$.

... and we cannot reject f because it is the interpretation of a program!
Key observation, part 1

If $f \in P_{coh}^!(1,1)$ and $x, u \in [0,1]$ satisfy $x + u \in [0,1]$ then by the Taylor formula at x

$$f(x + u) = f(x) + f'(x)u + \frac{1}{2}f''(x)u^2 + \cdots \in [0,1]$$

and all these derivatives are ≥ 0, so we have $f(x) + f'(x)u \in [0,1]$.
Key observation, part 1

If $f \in \mathbf{P}_{\text{coh}}(1, 1)$ and $x, u \in [0, 1]$ satisfy $x + u \in [0, 1]$
Key observation, part 1

If \(f \in P_{\text{coh}}^1(1, 1) \) and

\[x, u \in [0, 1] \text{ satisfy } x + u \in [0, 1] \]

then by the Taylor formula at \(x \)

\[f(x + u) = f(x) + f'(x)u + \frac{1}{2} f''(x)u^2 + \cdots \in [0, 1] \]
If \(f \in \mathbf{P}_{\text{coh}}!(1, 1) \) and

\[x, u \in [0, 1] \text{ satisfy } x + u \in [0, 1] \]

then by the Taylor formula at \(x \)

\[
f(x + u) = f(x) + f'(x)u + \frac{1}{2}f''(x)u^2 + \cdots \in [0, 1]
\]

and all these derivatives are \(\geq 0 \), so we have

\[
f(x) + f'(x)u \in [0, 1].
\]
So if we set \(S = \{ (x, u) \in [0, 1]^2 \mid x + u \in [0, 1] \} \) we can define

\[
\begin{align*}
Df : S & \rightarrow S \\
(x, u) & \mapsto (f(x), f'(x)u)
\end{align*}
\]

similar to \(T_f \), the tangent bundle functor.
So if we set \(S = \{(x, u) \in [0, 1]^2 \mid x + u \in [0, 1]\} \) we can define

\[
Df : S \rightarrow S \\
(x, u) \mapsto (f(x), f'(x)u)
\]

similar to \(T_f \), the tangent bundle functor.

Key observation, part 2

\(S \) can be seen as an object of \(\text{Pcoh} \) and

\[
\forall f \in \text{Pcoh}! (1, 1) \quad Df \in \text{Pcoh}! (S, S)
\]

Can be extended to *all the objects* of \(\text{Pcoh} \), not only 1.

\(\leadsto \) Coherent Differentiation
An important case of coherent differentiation: the elementary situation
Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \rightarrow Y)$;
Summability in a linear category

Assume:

• \(\mathcal{L} \) is a SMCC, tensor \(X \otimes Y \), tensor unit 1, internal hom \(\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \to Y) \);

• \(\mathcal{L} \) has 0-morphisms \(0 \in \mathcal{L}(X, Y) \) with \(0 \cdot t = 0 \) and \(t \cdot 0 = 0 \);
Summability in a linear category

Assume:

- \(\mathcal{L} \) is a SMCC, tensor \(X \otimes Y \), tensor unit 1, internal hom \(\mathcal{L}(Z \otimes X, Y) \cong \mathcal{L}(Z, X \rightarrow Y) \);
- \(\mathcal{L} \) has 0-morphisms \(0 \in \mathcal{L}(X, Y) \) with \(0 t = 0 \) and \(t 0 = 0 \);
- \(\mathcal{L} \) is cartesian, cartesian product \(\&_{i \in I} X_i \) with projections \(pr_i \) and if \((t_i \in \mathcal{L}(Y, X_i))_{i \in I} \) then \(\langle t_i \rangle_{i \in I} \in \mathcal{L}(Y, \&_{i \in I} X_i) \).

We don’t assume \(\mathcal{L} \) to be additive.

Remark (some sums do exist)

\[\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1 \& 1) \] have a sum

\[\langle \text{Id}_1, 0 \rangle + \langle 0, \text{Id}_1 \rangle = \langle \text{Id}_1, \text{Id}_1 \rangle \in \mathcal{L}(1 \& 1). \]
Assume:

- \(\mathcal{L} \) is a SMCC, tensor \(X \otimes Y \), tensor unit 1, internal hom \(\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \to Y) \);
- \(\mathcal{L} \) has 0-morphisms \(0 \in \mathcal{L}(X, Y) \) with \(0 \circ t = 0 \) and \(t \circ 0 = 0 \);
- \(\mathcal{L} \) is cartesian, cartesian product \(\&_{i \in I} X_i \) with projections \(pr_i \) and if \((t_i \in \mathcal{L}(Y, X_i))_{i \in I} \) then \(\langle t_i \rangle_{i \in I} \in \mathcal{L}(Y, \&_{i \in I} X_i) \).

We don’t assume \(\mathcal{L} \) to be additive.
Summability in a linear category

Assume:

• \(\mathcal{L} \) is a SMCC, tensor \(X \otimes Y \), tensor unit 1, internal hom \(\mathcal{L}(Z \otimes X, Y) \cong \mathcal{L}(Z, X \rightarrow Y) \);

• \(\mathcal{L} \) has 0-morphisms \(0 \in \mathcal{L}(X, Y) \) with \(0 t = 0 \) and \(t 0 = 0 \);

• \(\mathcal{L} \) is cartesian, cartesian product \(\&_{i \in I} X_i \) with projections \(\text{pr}_i \) and if \((t_i \in \mathcal{L}(Y, X_i))_{i \in I} \) then \(\langle t_i \rangle_{i \in I} \in \mathcal{L}(Y, \&_{i \in I} X_i) \).

We don’t assume \(\mathcal{L} \) to be additive.

Remark (some sums do exist)

\[\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1) \]
Summability in a linear category

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \to Y)$;
- \mathcal{L} has 0-morphisms $0 \in \mathcal{L}(X, Y)$ with $0 t = 0$ and $t 0 = 0$;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_i$ with projections $p_r i$ and if $(t_i \in \mathcal{L}(Y, X_i))_{i \in I}$ then $\langle t_i \rangle_{i \in I} \in \mathcal{L}(Y, \&_{i \in I} X_i)$.

We don’t assume \mathcal{L} to be additive.

Remark (some sums do exist)

$\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1)$

have a sum $\langle \text{Id}_1, 0 \rangle + \langle 0, \text{Id}_1 \rangle = \langle \text{Id}_1, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1)$.
The functor of summable pairs

\(S : \mathcal{L} \to \mathcal{L} \) given by

\[
SX = (1 \& 1 \to X)
\]

Intuition

A “point” of \(SX \) is a pair of two points of \(X \) whose sum is well defined.
The functor of summable pairs

\[S : \mathcal{L} \to \mathcal{L} \text{ given by} \]

\[SX = (1 \& 1 \rightarrow X) \]

Intuition

A “point” of \(SX \) is a pair of two points of \(X \) whose sum is well defined.

- \(\pi_0 = (\langle \text{Id}_1, 0 \rangle \rightarrow X) \in \mathcal{L}(SX, X) \) fst component of pairs
- \(\pi_1 = (\langle 0, \text{Id}_1 \rangle \rightarrow X) \in \mathcal{L}(SX, X) \) snd component of pairs
The functor of summable pairs

$S : \mathcal{L} \rightarrow \mathcal{L}$ given by

$$SX = (1 \& 1 \rightarrow X)$$

Intuition

A “point” of SX is a pair of two points of X whose sum is well defined.

- $\pi_0 = (\langle \text{Id}_1, 0 \rangle \rightarrow X) \in \mathcal{L}(SX, X)$ fst component of pairs
- $\pi_1 = (\langle 0, \text{Id}_1 \rangle \rightarrow X) \in \mathcal{L}(SX, X)$ snd component of pairs
- $\sigma = (\langle \text{Id}_1, \text{Id}_1 \rangle \rightarrow X) \in \mathcal{L}(SX, X)$ sum of pairs.
Assume \(\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1) \) are jointly epic and hence \(\pi_0, \pi_1 \in \mathcal{L}(S X, X) \) are jointly monic: this is a property of \(\mathcal{L} \) which holds very often.
Assume $\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1)$ are jointly epic and hence $\pi_0, \pi_1 \in \mathcal{L}((S\!X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Definition (summability and sum of morphisms)

$f_0, f_1 \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, S\!X)$ such that $\pi_i \circ h = f_i$ ($i = 0, 1$).
Assume $\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1)$ are jointly epic and hence $\pi_0, \pi_1 \in \mathcal{L}(S X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Definition (summability and sum of morphisms)

$f_0, f_1 \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, S X)$ such that $\pi_i \cdot h = f_i$ ($i = 0, 1$).

This h is unique: $\langle f_0, f_1 \rangle_S = h$ (witness of summability).
Assume \(\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1) \) are jointly epic and hence \(\pi_0, \pi_1 \in \mathcal{L}(\text{SX}, X) \) are jointly monic: this is a property of \(\mathcal{L} \) which holds very often.

Definition (summability and sum of morphisms)

\(f_0, f_1 \in \mathcal{L}(Y, X) \) are summable if there is \(h \in \mathcal{L}(Y, \text{SX}) \) such that \(\pi_i \circ h = f_i \) \((i = 0, 1) \).

This \(h \) is unique: \(\langle f_0, f_1 \rangle_s = h \) (witness of summability).

\(f_0 + f_1 = \sigma \langle f_0, f_1 \rangle_s \).
Assume \(\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1) \) are jointly epic and hence \(\pi_0, \pi_1 \in \mathcal{L}(S\mathcal{X}, \mathcal{X}) \) are jointly monic: this is a property of \(\mathcal{L} \) which holds very often.

Definition (summability and sum of morphisms)

\(f_0, f_1 \in \mathcal{L}(Y, X) \) are summable if there is \(h \in \mathcal{L}(Y, S\mathcal{X}) \) such that \(\pi_i \cdot h = f_i \) (\(i = 0, 1 \)).

This \(h \) is unique: \(\langle f_0, f_1 \rangle_s = h \) (witness of summability).

\(f_0 + f_1 = \sigma \langle f_0, f_1 \rangle_s \).

Fact

If \(\mathcal{L} \) satisfies an additional witness property then, equipped with 0 and +, each \(\mathcal{L}(X, Y) \) is a commutative partial monoid.
Assume \(\langle \text{Id}_1, 0 \rangle, \langle 0, \text{Id}_1 \rangle \in \mathcal{L}(1, 1 \& 1) \) are jointly epic and hence \(\pi_0, \pi_1 \in \mathcal{L}(S\mathcal{X}, \mathcal{X}) \) are jointly monic: this is a property of \(\mathcal{L} \) which holds very often.

Definition (summability and sum of morphisms)

\[f_0, f_1 \in \mathcal{L}(Y, X) \text{ are summable if there is } h \in \mathcal{L}(Y, S\mathcal{X}) \text{ such that } \pi_i h = f_i \ (i = 0, 1). \]

This \(h \) is unique: \(\langle f_0, f_1 \rangle_S = h \) (witness of summability).

\[f_0 + f_1 = \sigma \langle f_0, f_1 \rangle_S. \]

Fact

If \(\mathcal{L} \) satisfies an additional witness property then, equipped with 0 and +, each \(\mathcal{L}(X, Y) \) is a commutative partial monoid.

Composition is compatible with this structure.
Comonoid structure of $1 \& 1$

When \mathcal{L} satisfies these conditions, $1 \& 1$ has a structure of commutative comonoid

$$\text{pr}_0 : 1 \& 1 \rightarrow 1 \quad \text{fst projection of } \&$$

$$\widetilde{\mathcal{L}} : 1 \& 1 \rightarrow (1 \& 1) \otimes (1 \& 1)$$

fully characterized by

$$\widetilde{\mathcal{L}} \langle \text{Id}_1, 0 \rangle = \langle \text{Id}_1, 0 \rangle \otimes \langle \text{Id}_1, 0 \rangle$$

$$\widetilde{\mathcal{L}} \langle 0, \text{Id}_1 \rangle = \langle \text{Id}_1, 0 \rangle \otimes \langle 0, \text{Id}_1 \rangle + \langle 0, \text{Id}_1 \rangle \otimes \langle \text{Id}_1, 0 \rangle$$

NB: this sum is well defined (by the witness assumption).

Remember that $\langle \text{Id}_1, 0 \rangle$ and $\langle 0, \text{Id}_1 \rangle$ are jointly epic.
When \mathcal{L} satisfies these conditions, $1 \& 1$ has a structure of commutative comonoid

\[
\text{pr}_0 : 1 \& 1 \to 1 \quad \text{fst projection of } \&
\]
\[
\tilde{\mathcal{L}} : 1 \& 1 \to (1 \& 1) \otimes (1 \& 1)
\]

fully characterized by

\[
\tilde{\mathcal{L}} \langle \text{id}_1, 0 \rangle = \langle \text{id}_1, 0 \rangle \otimes \langle \text{id}_1, 0 \rangle
\]
\[
\tilde{\mathcal{L}} \langle 0, \text{id}_1 \rangle = \langle \text{id}_1, 0 \rangle \otimes \langle 0, \text{id}_1 \rangle + \langle 0, \text{id}_1 \rangle \otimes \langle \text{id}_1, 0 \rangle
\]

NB: this sum is well defined (by the witness assumption).

Remember that $\langle \text{id}_1, 0 \rangle$ and $\langle 0, \text{id}_1 \rangle$ are jointly epic.
Assume that \mathcal{L} is equipped with a **resource modality**, that is

- a comonad $(_!, \text{der}, \text{dig})$
- with a symmetric monoidal structure from $(\mathcal{L}, \&)$ to (\mathcal{L}, \otimes): there are well-behaved isos $1 \to \top _!$ and $_! X \otimes _! Y \to _!(X \& Y)$.

Exponential
Assume that \mathcal{L} is equipped with a **resource modality**, that is

- a comonad $(!, \text{der}, \text{dig})$
- with a symmetric monoidal structure from $(\mathcal{L}, \&)$ to (\mathcal{L}, \otimes):
 - there are well-behaved isos $1 \to !\top$ and $!X \otimes !Y \to !(X \& Y)$.

Then the Kleisli category $\mathcal{L}_!$ is intuitively the category of non-linear morphisms that we will differentiate.

- $\text{Obj}(\mathcal{L}_!) = \text{Obj}(\mathcal{L})$
- $\mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$.

Exponential
Definition

A differential structure on \mathcal{L} is a $!$-coalgebra structure $\tilde{\partial}$ on 1 & 1:

$$\tilde{\partial} : 1 \& 1 \to !(1 \& 1)$$

such that pr_0 and \tilde{L} are coalgebra morphisms.
Differential structure

Definition

A **differential structure** on \(\mathcal{L} \) is a \(!\)-coalgebra structure \(\tilde{\partial} \) on \(1 \& 1 \):

\[
\tilde{\partial} : 1 \& 1 \rightarrow !((1 \& 1))
\]

such that \(\text{pr}_0 \) and \(\tilde{L} \) are coalgebra morphisms.

Remark (CD is everywhere...)

If \((\mathcal{L}, !_)_\) is a Lafont category (ie. \(!_\) is the cofree symmetric comonoid functor) there is exactly one differential structure, induced by \((\text{pr}_0, \tilde{L})\).
What is the link with differentiation?

Using \(\tilde{\partial} \) we can define a natural transformation
\[
\partial_X : !S_X = !(1 \& 1 \rhd X) \to S!X = (1 \& 1 \rhd !X),
\]
What is the link with differentiation?

Using \(\partial \) we can define a natural transformation

\[
\partial_X : !S_X = !(1 \& 1 \twoheadrightarrow X) \rightarrow S!X = (1 \& 1 \twoheadrightarrow !X),
\]

Curry transpose of

\[
!(1 \& 1 \twoheadrightarrow X) \otimes (1 \& 1) \xrightarrow{\text{Id} \otimes \partial} !(1 \& 1 \twoheadrightarrow X) \otimes !(1 \& 1) \xrightarrow{\mu^2} !((1 \& 1 \twoheadrightarrow X) \otimes (1 \& 1)) \xrightarrow{!ev} !X
\]

\(\mu^2 \): lax monoidality \(\otimes \rightarrow \otimes \), derived from the monoidality \(\& \rightarrow \otimes \).

\(\text{ev} \): evaluation morphism.
Fact (extending S to $L_!$ thanks to $\partial \rightsquigarrow$ differentiation functor)

$\partial_X : !SX \to S!X$ is a distributive law.
Fact (extending S to $\mathcal{L}_!$ thanks to $\partial \rightsquigarrow$ differentiation functor)

$\partial_X : !SX \rightarrow S!X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \rightarrow Y$
Fact (extending S to $\mathcal{L}_!$ thanks to $\partial \rightsquigarrow$ differentiation functor)

$\partial_X : !SX \rightarrow S!X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \rightarrow Y$ then

$$D t = (S t) \partial_X \in \mathcal{L}_!(SX, SY)$$
Fact (extending S to $\mathcal{L}_!$ thanks to $\partial \rightsquigarrow$ differentiation functor)

$\partial_X : !S X \to S !X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \to Y$ then

$$D t = (S t) \partial_X \in \mathcal{L}_!(S X, S Y)$$

can be understood intuitively as mapping $(x, u) \in S X$ (that is $x, u \in X$ summable) to $(t(x), t'(x) \cdot u) \in S Y$, a summable pair.
Fact (extending S to $\mathcal{L}_!$ thanks to $\partial \mapsto$ differentiation functor)

$\partial_X : !SX \to S!X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \to Y$ then

$$Dt = (S t) \partial_X \in \mathcal{L}_!(SX, SY)$$

can be understood intuitively as mapping $(x, u) \in SX$ (that is $x, u \in X$ summable) to $(t(x), t'(x) \cdot u) \in SY$, a summable pair.

D is a functor (chain rule).
The simplest example: strict coherence spaces

\[E = (|E|, \bowtie_E) \] where \(|E|\) is a set (web) and \(\bowtie_E\) is a binary and symmetric relation on \(|E|\) (not required to be reflexive nor anti-reflexive).

\[\text{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in x \quad a \bowtie_E a' \} \]

\[E \mapsto F \text{ defined by } |E \mapsto F| = |E| \times |F| \text{ and } (a, b) \bowtie_{E \mapsto F} (a', b') \text{ if } a \bowtie_E b \Rightarrow a' \bowtie_F b' \].

Category \(\text{Scoh} \): objects are the strict coherence spaces and \(\text{Scoh}(E, F) = \text{Cl}(E \mapsto F) \subseteq |E| \times |F| \).

\[E = (|E|, \bowtie_E) \] where \(|E|\) is a set (web) and \(\bowtie_E\) is a binary and symmetric relation on \(|E|\) (not required to be reflexive nor anti-reflexive).

\[\text{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in x \; a \bowtie_E a' \} \].

\[E = (|E|, \bowtie_E) \text{ where } |E| \text{ is a set (web) and } \bowtie_E \text{ is a binary and symmetric relation on } |E| \text{ (not required to be reflexive nor anti-reflexive)}. \]

\[\text{Cl}(E) = \{x \subseteq |E| \mid \forall a, a' \in x \ a \bowtie_E a' \}. \]

\[E \circ F \text{ defined by } |E \circ F| = |E| \times |F| \text{ and } (a, b) \bowtie_{E \circ F} (a', b') \text{ if } a \bowtie_E b \Rightarrow a' \bowtie_F b'. \]

\[E = (|E|, \bowtie_E) \] where \(|E|\) is a set (web) and \(\bowtie_E\) is a binary and symmetric relation on \(|E|\) (not required to be reflexive nor anti-reflexive).

\[\text{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in x \; a \bowtie_E a' \} \].

\(E \rightarrow F\) defined by \(|E \rightarrow F| = |E| \times |F|\) and \((a, b) \bowtie_{E \rightarrow F} (a', b')\) if \(a \bowtie_E b \Rightarrow a' \bowtie_F b'\).

Category \textbf{Scoh}: objects are the strict coherence spaces and \(\text{Scoh}(E, F) = \text{Cl}(E \rightarrow F) \subseteq |E| \times |F|\).

\(E = (|E|, \bowtie_E) \) where \(|E|\) is a set (web) and \(\bowtie_E \) is a binary and symmetric relation on \(|E|\) (not required to be reflexive nor anti-reflexive).

\[\text{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in x \ a \bowtie_E a' \} \]

\(E \twoheadrightarrow F \) defined by \(|E \twoheadrightarrow F| = |E| \times |F|\) and \((a, b) \bowtie_{E \twoheadrightarrow F} (a', b')\) if \(a \bowtie_E b \Rightarrow a' \bowtie_F b'\).

Category \(\text{Scoh} \): objects are the strict coherence spaces and \(\text{Scoh}(E, F) = \text{Cl}(E \twoheadrightarrow F) \subseteq |E| \times |F| \).

The SMC structure of SCS

- $|1| = \{\ast\}$ with $\ast \bowtie_1 \ast$
- $|E \otimes F| = |E| \times |F|$ and $(a, b) \bowtie_{E \otimes F} (a', b')$ if $a \bowtie_E a'$ and $b \bowtie_F b'$.
The SMC structure of SCS

- $|1| = \{\ast\}$ with $\ast \sqcup_1 \ast$
- $|E \otimes F| = |E| \times |F|$ and $(a, b) \sqcup_{E \otimes F} (a', b')$ if $a \sqcup_E a'$ and $b \sqcup_F b'$.
- SMCC: $\mathbf{Scoh}(G \otimes E, F) \sim \mathbf{Scoh}(G, E \rightarrow F)$ trivially maps t to $\{(c, (a, b)) \mid ((c, a), b) \in t\}$.
Cartesian product

- $|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i|$
- $(i, a) \&_{i \in I} E_i (j, b) \text{ if } i = j \Rightarrow a \&_{E_i} b.$
Cartesian product

- $|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i|$
- $(i, a) \cap_{\&_{i \in I} E_i} (j, b)$ if $i = j \Rightarrow a \cap_{E_i} b$.
- So that in particular $\text{Cl}(\&_{i \in I} E_i) \cong \prod_{i \in I} \text{Cl}(E_i)$.

Fact

$|1 \& 1| = \{0, 1\}$ with $i \cap_{1\&1} j$ for all $i, j \in \{0, 1\}$, so that $\text{Cl}(1 \& 1) = \mathcal{P}(\{0, 1\})$.

$\langle \text{Id}_1, 0 \rangle = \{\langle *, 0\rangle\}$ and $\langle 0, \text{Id}_1 \rangle = \{\langle *, 1\rangle\}$ are trivially jointly epic.
Cartesian product

- $|\&_{i\in I} E_i| = \bigcup_{i\in I} \{i\} \times |E_i|$
- $(i, a) \preceq_{\&_{i\in I} E_i} (j, b)$ if $i = j \Rightarrow a \preceq_{E_i} b$.
- So that in particular $\text{Cl}(\&_{i\in I} E_i) \simeq \prod_{i\in I} \text{Cl}(E_i)$.

Fact

$|1 \& 1| = \{0, 1\}$ with $i \preceq_{1\&1} j$ for all $i, j \in \{0, 1\}$, so that $\text{Cl}(1 \& 1) = \mathcal{P}(\{0, 1\})$.

$\langle \text{Id}_1, 0 \rangle = \{(\ast, 0)\}$ and $\langle 0, \text{Id}_1 \rangle = \{(\ast, 1)\}$ are trivially jointly epic.
• \(|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i| \)
• \((i, a) \prec_{\&_{i \in I} E_i} (j, b) \) if \(i = j \Rightarrow a \prec_{E_i} b. \)
• So that in particular \(\Cl(\&_{i \in I} E_i) \cong \prod_{i \in I} \Cl(E_i). \)

Fact

\(|1 \& 1| = \{0, 1\} \) with \(i \prec_{1 \& 1} j \) for all \(i, j \in \{0, 1\}, \) so that \(\Cl(1 \& 1) = \mathcal{P}(\{0, 1\}). \)

\(\langle \text{Id}_1, 0 \rangle = \{(*, 0)\} \) and \(\langle 0, \text{Id}_1 \rangle = \{(*, 1)\} \) are trivially jointly epic.

\(\Cl(SE) = \Cl(1 \& 1 \rightarrow E) \cong \{(x_0, x_1) \in \Cl(E)^2 \mid x_0 \cup x_1 \in \Cl(E)\} \)
Cartesian product

- $| \&_{i \in I} E_i | = \bigcup_{i \in I} \{ i \} \times |E_i|$
- $(i, a) \bowtie_{\&_{i \in I} E_i} (j, b)$ if $i = j \Rightarrow a \bowtie_{E_i} b$.
- So that in particular $\text{Cl}(\&_{i \in I} E_i) \simeq \prod_{i \in I} \text{Cl}(E_i)$.

Fact

$|1 \& 1| = \{0, 1\}$ with $i \bowtie_{1\&1} j$ for all $i, j \in \{0, 1\}$, so that $\text{Cl}(1 \& 1) = \mathcal{P}(\{0, 1\})$.

$\langle \text{id}_1, 0 \rangle = \{(\ast, 0)\}$ and $\langle 0, \text{id}_1 \rangle = \{(\ast, 1)\}$ are trivially jointly epic.

$\text{Cl}(SE) = \text{Cl}(1 \& 1 \rightarrow E) \simeq \{(x_0, x_1) \in \text{Cl}(E)^2 \mid x_0 \cup x_1 \in \text{Cl}(E)\}$

$s_0, s_1 \in \text{Scoh}(E, F)$ are summable iff $s_0 \cup s_1 \in \text{Scoh}(E, F)$ and then $s_0 + s_1 = s_0 \cup s_1$.
Intermezzo: duality and booleans

Scoh is a model of classical LL: take $|E^\bot| = |E|$ and $a \sim_{E^\bot} b$ if $\neg(a \sim_E b)$. Then $E^{\bot\bot} = E$.

Remark (SCS are not a stable model) Contrarily to Girard’s CS, SCS accept the parallel or program.
Intermezzo: duality and booleans

\textbf{ScOH} is a model of classical LL: take $|E\perp| = |E|$ and $a \bowtie_{E\perp} b$ if $\neg(a \bowtie_E b)$. Then $E\perp\perp = E$.

So \textbf{ScOH} has coproducts, in particular $1 \oplus 1 = (1\perp \& 1\perp)\perp$.
Intermezzo: duality and booleans

Scoh is a model of classical LL: take $|E^\perp| = |E|$ and $a \triangleleft_{E^\perp} b$ if $\neg (a \triangleleft_E b)$. Then $E^{\perp\perp} = E$.

So **Scoh** has coproducts, in particular $1 \oplus 1 = (1^\perp & 1^\perp)^\perp$ (notice that $1^\perp \neq 1$ contrarily to Girard’s CS!).
Intermezzo: duality and booleans

Scoh is a model of classical LL: take $|E^\perp| = |E|$ and $a \triangleleft_{E^\perp} b$ if $\neg(a \triangleleft_E b)$. Then $E^{\perp \perp} = E$.

So **Scoh** has coproducts, in particular $1 \oplus 1 = (1^\perp \& 1^\perp)^\perp$ (notice that $1^\perp \neq 1$ contrarily to Girard’s CS!).

$\text{Cl}(1 \oplus 1) = \{\emptyset, \{0\}, \{1\}\}$ so $\{0\}$ and $\{1\}$ are not summable in $1 \oplus 1$ (though they are summable in $1 \& 1$): the category **Scoh** is not additive.
Intermezzo: duality and booleans

Scoh is a model of classical LL: take $|E^\bot| = |E|$ and $a \bowtie_{E^\bot} b$ if $\neg(a \bowtie_E b)$. Then $E^\bot^\bot = E$.

So **Scoh** has coproducts, in particular $1 \oplus 1 = (1^\bot \& 1^\bot)^\bot$ (notice that $1^\bot \neq 1$ contrarily to Girard’s CS!).

$\text{Cl}(1 \oplus 1) = \{\emptyset, \{0\}, \{1\}\}$ so $\{0\}$ and $\{1\}$ are not summable in $1 \oplus 1$ (though they are summable in $1 \& 1$): the category **Scoh** is not additive.

Remark (SCS are not a stable model)

Contrarily to Girard’s CS, SCS accept the *parallel or* program.
Comonoid structure of 1 & 1

Remember

• $|1| = \{\ast\}$ and $\ast \bowtie_1 \ast$
• $|1 \& 1| = \{0, 1\}$ with $i \bowtie_{1\&1} j$ for all $i, j \in \{0, 1\}$, so that $\text{Cl}(1 \& 1) = \mathcal{P}(\{0, 1\})$.
Comonoid structure of 1 & 1

Remember

- $|1| = \{\ast\}$ and $\ast \bowtie_1 \ast$
- $|1 \& 1| = \{0, 1\}$ with $i \bowtie_{1\&1} j$ for all $i, j \in \{0, 1\}$, so that
 $\text{Cl}(1 \& 1) = \mathcal{P}(\{0, 1\})$.

1 & 1 as a comonoid

- counit: $\text{pr}_0 = \{(0, \ast) \in \text{Scoh}(1 \& 1, 1)\}$
- comultiplication: $\tilde{L} \in \text{Scoh}(1 \& 1, (1 \& 1) \otimes (1 \& 1))$ given by
 $\tilde{L} = \{(0, (0, 0))\} \cup \{(1, (0, 1)), (1, (1, 0))\}$
The cofree exponential: **Scoh** is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq P_{\text{fin}}(|E|)$.

Then $e_\partial \in \text{Scoh}(1 \& 1, !1 \& 1)$ is $e_\partial = \{ (i, [i_1, \ldots, i_k]) \mid i, i_1, \ldots, i_k \in \{0, 1\} \text{ and } i = i_1 + \cdots + i_k \}$.

- either $i = 0$ and all the i_j's are 0
- or $i = 1$ and all the i_j's $= 0$ but one which $= 1$.

The cofree exponential: \textbf{Scoh} is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{\text{fin}}(|E|)$.

Instead we use finite multisets: $|!E| = \mathcal{M}_{\text{fin}}(|E|)$ and

$$[a_1, \ldots, a_n] \sim!_E [b_1, \ldots, b_k] \quad \text{if} \quad \forall i, j \ a_i \sim_E b_j.$$
The cofree exponential: \textbf{Scoh} is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{\text{fin}}(|E|)$. Instead we use finite multisets: $|!E| = \mathcal{M}_{\text{fin}}(|E|)$ and

$$[a_1, \ldots, a_n] \triangledown !E [b_1, \ldots, b_k] \quad \text{if} \quad \forall i, j \; a_i \triangleleft_E b_j.$$

Then $\widetilde{\partial} \in \textbf{Scoh} (1 \& 1, !(1 \& 1))$ is

$$\widetilde{\partial} = \{(i, [i_1, \ldots, i_k]) \mid i, i_1, \ldots, i_k \in \{0, 1\} \text{ and } i = i_1 + \cdots + i_k\}$$

that is

- either $i = 0$ and all the i_j’s are $= 0$
- or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.

• either $i = 0$ and all the i_j’s are $= 0$
• or $i = 1$ and all the i_j’s $= 0$ but one which $= 1$.
Induced differentiation

Remember that $SE = (1 \& 1 \rightarrow E)$.

So that $|SE| = \{0, 1\} \times |E|$ and $(i, a) \triangleright_{SE} (j, b) \iff a \triangleright_{E} b.$
Induced differentiation

Remember that \(SE = (1 \& 1 \to E) \).

So that \(|SE| = \{0, 1\} \times |E|\) and \((i, a) \sim_{SE} (j, b) \iff a \sim_E b\).

Given \(t \in \text{Scoh}(!E, F) \) we get \(Dt \in \text{Scoh}(!SE, SF)\).
Induced differentiation

Remember that $SE = (1 \& 1 \rightarrow E)$.
So that $|SE| = \{0, 1\} \times |E|$ and $(i, a) \sim_{SE} (j, b) \iff a \sim_{E} b$.
Given $t \in \text{Scoh}(!E, F)$ we get $Dt \in \text{Scoh}(!SE, SF)$. Remember that intuitively

$$Dt(x, u) = (t(x), t'(x) \cdot u).$$
Induced differentiation

Remember that \(SE = (1 \& 1 \rightarrow E) \).
So that \(|SE| = \{0, 1\} \times |E| \) and \((i, a) \sim_{SE} (j, b) \iff a \sim_E b \).
Given \(t \in \text{Scoh}(!E, F) \) we get \(Dt \in \text{Scoh}(!SE, SF) \). Remember that intuitively

\[
Dt(x, u) = (t(x), t'(x) \cdot u).
\]

Fact

\[
Dt = \{([0, a_1, \ldots, (0, a_n)], (0, b)) \mid ([a_1, \ldots, a_n], b) \in t\}
\]
Induced differentiation

Remember that \(SE = (1 \& 1 \leadsto E) \).

So that \(|SE| = \{0, 1\} \times |E|\) and \((i, a) \sim_{SE} (j, b) \iff a \sim_E b\).

Given \(t \in \text{Scoh}(!E, F) \) we get \(Dt \in \text{Scoh}(!SE, SF) \). Remember that intuitively

\[
Dt(x, u) = (t(x), t'(x) \cdot u).
\]

Fact

\[
Dt = \{((0, a_1, \ldots, (0, a_n)), (0, b)) \mid ([a_1, \ldots, a_n], b) \in t\}
\]

\[
\cup \{(((0, a_1, \ldots, (0, a_n), (1, a)), (1, b)) \mid ([a_1, \ldots, a_n, a], b) \in t\}
\]
• We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
Conclusion

• We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
• In particular, there is a purely “cartesian theory” of CD without references to LL.
Conclusion

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely “cartesian theory” of CD without references to LL.
- There is also a syntactic version of CD, a “CD PCF” which
 - has a differentiation operation at all types
 - as well as general recursion (fixpoint operators at all types)
 - and features at the same time a fully deterministic operational semantics.
Conclusion

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely “cartesian theory” of CD without references to LL.
- There is also a syntactic version of CD, a “CD PCF” which
 - has a differentiation operation at all types
 - as well as general recursion (fixpoint operators at all types)
 - and features at the same time a fully deterministic operational semantics.
- It was impossible to have all these features in the differential \(\lambda \)-calculus.