Coherent differentiation

LHC days 2023

7 June

Thomas Ehrhard IRIF, CNRS, Inria and Université Paris Cité

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Linear Logic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Girard's LL (1986): most (all?) denotational models have an underlying structure similar to *linear algebra*

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.

Linear Logic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Girard's LL (1986): most (all?) denotational models have an underlying structure similar to *linear algebra*

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.

Exponential resource modality: connects the linear and non-linear worlds (categories).

Linear Logic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Girard's LL (1986): most (all?) denotational models have an underlying structure similar to *linear algebra*

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.

Exponential resource modality: connects the linear and non-linear worlds (categories).

Dereliction: we can forget that a function is linear.

Differentiation in LL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduces a converse operation.

 dereliction: forget linearity of a morphism linear → non-linear

Differentiation in LL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduces a converse operation.

- dereliction: forget linearity of a morphism linear → non-linear
- differentiation: best linear approximation of a morphism non-linear → linear

Differentiation in LL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduces a converse operation.

- dereliction: forget linearity of a morphism linear → non-linear
- differentiation: best linear approximation of a morphism non-linear → linear

reformulating logically the standard laws of the differential calculus.

 \rightsquigarrow the differential $\lambda\text{-calculus:}$

$$\frac{\Gamma \vdash M : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash DM \cdot N : A \Rightarrow B}$$

And $DM \cdot N$ is linear in N (and also in M).

Intuition

The derivative of *M* should be $M' : A \Rightarrow (A \multimap B)$. Then intuitively

$$\mathsf{D}M\cdot\mathsf{N}=\lambda x:A\cdot(M'x)(\mathsf{N})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Strong non-determinism of DiLL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Requires apparently a deduction rule

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : A}{\Gamma \vdash M + N : A} (+)$$

Strong non-determinism of DiLL

Requires apparently a deduction rule

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : A}{\Gamma \vdash M + N : A} (+)$$

for Leibniz

$$\frac{df(x,x)}{dx} \cdot u = f_1'(x,x) \cdot u + f_2'(x,x) \cdot u$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interaction between differentiation and contraction.

\rightsquigarrow models of DiLL are additive categories

Leibniz \rightsquigarrow the models \mathcal{L} of DiLL are *additive* categories:

L(X, Y) is a commutative monoid (with additive notations)
 for each objects X, Y of L

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• morphism composition is bilinear.

\rightsquigarrow models of DiLL are additive categories

Leibniz \rightsquigarrow the models \mathcal{L} of DiLL are *additive* categories:

- *L*(X, Y) is a commutative monoid (with additive notations)
 for each objects X, Y of L
- morphism composition is bilinear.

Remark

If \mathcal{L} is cartesian and additive then the cartesian product is also a coproduct, the terminal object is initial: $\& = \oplus$.

 \rightsquigarrow some LL degeneracy = non-determinism.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In *probabilistic coherence spaces* (**Pcoh**) non-linear morphisms are obviously differentiable: they are analytic functions,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In *probabilistic coherence spaces* (**Pcoh**) non-linear morphisms are obviously differentiable: they are analytic functions,

and **Pcoh** is not an additive category.

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In *probabilistic coherence spaces* (**Pcoh**) non-linear morphisms are obviously differentiable: they are analytic functions,

and **Pcoh** is not an additive category.

Question

Analytic functions have derivatives: what is the status of derivatives in such models?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

In *probabilistic coherence spaces* (**Pcoh**) non-linear morphisms are obviously differentiable: they are analytic functions,

and **Pcoh** is not an additive category.

Question

Analytic functions have derivatives: what is the status of derivatives in such models?

At first sight they seem to live outside...

In **Pcoh** the type 1 of LL is interpreted as

$[0,1]\subseteq \mathbb{R}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

In **Pcoh** the type 1 of LL is interpreted as

$[0,1]\subseteq \mathbb{R}$

A non-linear morphism, that is, an element of $\mathcal{L}_!(1,1),$ is an analytic function

$$f:[0,1] \to [0,1]$$
$$x \mapsto \sum_{n=0}^{\infty} a_n x^n$$

In **Pcoh** the type 1 of LL is interpreted as

$[0,1]\subseteq \mathbb{R}$

A non-linear morphism, that is, an element of $\mathcal{L}_!(1,1),$ is an analytic function

$$f: [0,1] \rightarrow [0,1]$$

 $x \mapsto \sum_{n=0}^{\infty} a_n x^n$

for a (uniquely determined) sequence $(a_n)_{n\in\mathbb{N}}$ of elements of $\mathbb{R}_{\geq 0}$ such that $\sum_{n\in\mathbb{N}} a_n \leq 1$.

In Pcoh the type 1 of LL is interpreted as

$[0,1]\subseteq \mathbb{R}$

A non-linear morphism, that is, an element of $\mathcal{L}_!(1,1),$ is an analytic function

$$f: [0,1] \rightarrow [0,1]$$

 $x \mapsto \sum_{n=0}^{\infty} a_n x^n$

for a (uniquely determined) sequence $(a_n)_{n\in\mathbb{N}}$ of elements of $\mathbb{R}_{\geq 0}$ such that $\sum_{n\in\mathbb{N}} a_n \leq 1$.

Problem

 $f'(x) = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$ has no reason to satisfy $f' \in \mathcal{L}_!(1,1)$.

For instance: f defined by $f(x) = 1 - \sqrt{1-x}$ belongs to **Pcoh**_!(1,1)

For instance: f defined by $f(x) = 1 - \sqrt{1-x}$ belongs to $\mathbf{Pcoh}_{!}(1,1)$ but

$$f'(x) = \frac{1}{2\sqrt{1-x}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

is not even defined on the whole of [0,1] and is not bounded on $[0,1). \hdots$.

For instance: f defined by $f(x) = 1 - \sqrt{1-x}$ belongs to $\mathbf{Pcoh}_{!}(1,1)$ but

$$f'(x) = \frac{1}{2\sqrt{1-x}}$$

is not even defined on the whole of [0,1] and is not bounded on $[0,1). \hdots$.

 \dots and we cannot reject f because it is the interpretation of a program!

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

```
If f \in \mathbf{Pcoh}_{!}(1,1) and
```

 $x, u \in [0, 1]$ satisfy $x + u \in [0, 1]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If $f \in \mathbf{Pcoh}_{!}(1,1)$ and

$$x, u \in [0, 1]$$
 satisfy $x + u \in [0, 1]$

then by the Taylor formula at x

$$f(x + u) = f(x) + f'(x)u + \frac{1}{2}f''(x)u^2 + \cdots \in [0, 1]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $f \in \mathbf{Pcoh}_{!}(1,1)$ and

$$x, u \in [0, 1]$$
 satisfy $x + u \in [0, 1]$

then by the Taylor formula at x

$$f(x+u) = f(x) + f'(x)u + \frac{1}{2}f''(x)u^2 + \cdots \in [0,1]$$

and all these derivatives are \geq 0, so we have

 $f(x) + f'(x)u \in [0,1]$.

So if we set $S = \{(x, u) \in [0, 1]^2 \mid x + u \in [0, 1]\}$ we can define $Df: S \to S$ $(x, u) \mapsto (f(x), f'(x)u)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

similar to Tf, the tangent bundle functor.

So if we set $S = \{(x, u) \in [0, 1]^2 \mid x + u \in [0, 1]\}$ we can define $Df: S \to S$ $(x, u) \mapsto (f(x), f'(x)u)$

similar to Tf, the tangent bundle functor.

Key observation, part 2

S can be seen as an object of Pcoh and

```
\forall f \in \mathbf{Pcoh}_{!}(1,1) \quad \mathsf{D}f \in \mathbf{Pcoh}_{!}(S,S)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Can be extended to all the objects of **Pcoh**, not only 1.

 \rightsquigarrow Coherent Differentiation

An important case of coherent differentiation: the elementary situation

(ロ)、(型)、(E)、(E)、 E) のQ(()

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Assume:

• \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y)$;

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y);$
- \mathcal{L} has 0-morphisms $0 \in \mathcal{L}(X, Y)$ with 0 t = 0 and t 0 = 0;

A D N A 目 N A E N A E N A B N A C N

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y);$
- \mathcal{L} has 0-morphisms $0 \in \mathcal{L}(X, Y)$ with 0 t = 0 and t 0 = 0;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_i$ with projections pr_i and if $(t_i \in \mathcal{L}(Y, X_i))_{i \in I}$ then $\langle t_i \rangle_{i \in I} \in \mathcal{L}(Y, \&_{i \in I} X_i)$.

A D N A 目 N A E N A E N A B N A C N

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y);$
- \mathcal{L} has 0-morphisms $0 \in \mathcal{L}(X, Y)$ with 0 t = 0 and t 0 = 0;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_i$ with projections pr_i and if $(t_i \in \mathcal{L}(Y, X_i))_{i \in I}$ then $\langle t_i \rangle_{i \in I} \in \mathcal{L}(Y, \&_{i \in I} X_i)$.

We don't assume \mathcal{L} to be additive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y);$
- \mathcal{L} has 0-morphisms $0 \in \mathcal{L}(X, Y)$ with 0 t = 0 and t 0 = 0;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_i$ with projections pr_i and if $(t_i \in \mathcal{L}(Y, X_i))_{i \in I}$ then $\langle t_i \rangle_{i \in I} \in \mathcal{L}(Y, \&_{i \in I} X_i)$.

We don't assume ${\mathcal L}$ to be additive.

Remark (some sums do exist)

 $\langle \mathsf{Id}_1, 0 \rangle, \langle 0, \mathsf{Id}_1 \rangle \in \mathcal{L}(1, 1 \ \& \ 1)$
Summability in a linear category

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1, internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y);$
- \mathcal{L} has 0-morphisms $0 \in \mathcal{L}(X, Y)$ with 0 t = 0 and t 0 = 0;
- *L* is cartesian, cartesian product &_{i∈I} X_i with projections pr_i and if (t_i ∈ L(Y, X_i))_{i∈I} then ⟨t_i⟩_{i∈I} ∈ L(Y, &_{i∈I} X_i).

We don't assume \mathcal{L} to be additive.

Remark (some sums do exist)

$$\begin{split} \langle \mathsf{Id}_1, \mathsf{0} \rangle, \langle \mathsf{0}, \mathsf{Id}_1 \rangle &\in \mathcal{L}(1, 1 \ \& 1) \\ \mathsf{have a sum} \ \langle \mathsf{Id}_1, \mathsf{0} \rangle + \langle \mathsf{0}, \mathsf{Id}_1 \rangle = \langle \mathsf{Id}_1, \mathsf{Id}_1 \rangle \in \mathcal{L}(1, 1 \ \& 1). \end{split}$$

The functor of summable pairs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $\boldsymbol{S}:\mathcal{L}\rightarrow\mathcal{L}$ given by

 $SX = (1 \& 1 \multimap X)$

Intuition

A "point" of SX is a pair of two points of X whose sum is well defined.

The functor of summable pairs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\boldsymbol{S}:\mathcal{L}\rightarrow\mathcal{L}$ given by

 $\mathbf{S}X = (1 \& 1 \multimap X)$

Intuition

A "point" of SX is a pair of two points of X whose sum is well defined.

- $\pi_0 = (\langle \mathsf{Id}_1, 0 \rangle \multimap X) \in \mathcal{L}(\mathsf{S}X, X)$ fst component of pairs
- $\pi_1 = (\langle 0, \mathsf{Id}_1 \rangle \multimap X) \in \mathcal{L}(\mathsf{S}X, X)$ snd component of pairs

The functor of summable pairs

 $\boldsymbol{S}:\mathcal{L}\rightarrow\mathcal{L}$ given by

 $\mathbf{S}X = (1 \& 1 \multimap X)$

Intuition

A "point" of SX is a pair of two points of X whose sum is well defined.

- $\pi_0 = (\langle \mathsf{Id}_1, 0 \rangle \multimap X) \in \mathcal{L}(\mathsf{S}X, X)$ fst component of pairs
- $\pi_1 = (\langle 0, \mathsf{Id}_1 \rangle \multimap X) \in \mathcal{L}(\mathsf{S}X, X)$ snd component of pairs
- $\sigma = (\langle \mathsf{Id}_1, \mathsf{Id}_1 \rangle \multimap X) \in \mathcal{L}(SX, X)$ sum of pairs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (summability and sum of morphisms)

 $f_0, f_1 \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, SX)$ such that π_i $h = f_i$ (i = 0, 1).

Definition (summability and sum of morphisms)

 $f_0, f_1 \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, SX)$ such that π_i $h = f_i$ (i = 0, 1).

This *h* is unique: $\langle f_0, f_1 \rangle_{\mathbf{S}} = h$ (witness of summability).

Definition (summability and sum of morphisms)

 $f_0, f_1 \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, SX)$ such that π_i $h = f_i$ (i = 0, 1).

This *h* is unique: $\langle f_0, f_1 \rangle_{\mathbf{S}} = h$ (witness of summability).

 $f_0 + f_1 = \sigma \, \langle f_0, f_1 \rangle_{\mathbf{S}}.$

Definition (summability and sum of morphisms)

 $f_0, f_1 \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, SX)$ such that π_i $h = f_i$ (i = 0, 1).

This *h* is unique: $\langle f_0, f_1 \rangle_{\mathbf{S}} = h$ (witness of summability).

 $f_0 + f_1 = \sigma \, \langle f_0, f_1 \rangle_{\mathbf{S}}.$

Fact

If \mathcal{L} satisfies an additional witness property then, equipped with 0 and +, each $\mathcal{L}(X, Y)$ is a commutative partial monoid.

Definition (summability and sum of morphisms)

 $f_0, f_1 \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, SX)$ such that π_i $h = f_i$ (i = 0, 1).

This *h* is unique: $\langle f_0, f_1 \rangle_{\mathbf{S}} = h$ (witness of summability).

 $f_0 + f_1 = \sigma \, \langle f_0, f_1 \rangle_{\mathbf{S}}.$

Fact

If \mathcal{L} satisfies an additional witness property then, equipped with 0 and +, each $\mathcal{L}(X, Y)$ is a commutative partial monoid.

Composition is compatible with this structure.

Comonoid structure of 1 & 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

When ${\mathcal L}$ satisfies these conditions, $1 \ \& \ 1$ has a structure of commutative comonoid

$$\begin{array}{ll} \mathsf{pr}_0: 1 \And 1 \to 1 & \text{fst projection of } \And\\ \widetilde{\mathsf{L}}: 1 \And 1 \to (1 \And 1) \otimes (1 \And 1) \end{array}$$

fully characterized by

$$\begin{split} \widetilde{\mathsf{L}} & \langle \mathsf{Id}_1, 0 \rangle = \langle \mathsf{Id}_1, 0 \rangle \otimes \langle \mathsf{Id}_1, 0 \rangle \\ \widetilde{\mathsf{L}} & \langle 0, \mathsf{Id}_1 \rangle = \langle \mathsf{Id}_1, 0 \rangle \otimes \langle 0, \mathsf{Id}_1 \rangle + \langle 0, \mathsf{Id}_1 \rangle \otimes \langle \mathsf{Id}_1, 0 \rangle \end{split}$$

Comonoid structure of 1 & 1

When \mathcal{L} satisfies these conditions, 1 & 1 has a structure of commutative comonoid

$$\begin{array}{ll} \mathsf{pr}_0: 1 \And 1 \to 1 & \text{fst projection of } \And\\ \widetilde{\mathsf{L}}: 1 \And 1 \to (1 \And 1) \otimes (1 \And 1) \end{array}$$

fully characterized by

$$\begin{split} \widetilde{\mathsf{L}} & \langle \mathsf{Id}_1, \mathsf{0} \rangle = \langle \mathsf{Id}_1, \mathsf{0} \rangle \otimes \langle \mathsf{Id}_1, \mathsf{0} \rangle \\ & \widetilde{\mathsf{L}} & \langle \mathsf{0}, \mathsf{Id}_1 \rangle = \langle \mathsf{Id}_1, \mathsf{0} \rangle \otimes \langle \mathsf{0}, \mathsf{Id}_1 \rangle + \langle \mathsf{0}, \mathsf{Id}_1 \rangle \otimes \langle \mathsf{Id}_1, \mathsf{0} \rangle \end{split}$$

NB: this sum is well defined (by the witness assumption). Remember that $\langle Id_1, 0 \rangle$ and $\langle 0, Id_1 \rangle$ are jointly epic.

Exponential

Assume that \mathcal{L} is equipped with a resource modality, that is

- a comonad (!_, der, dig)
- with a symmetric monoidal structure from (L, &) to (L, ⊗): there are well-behaved isos 1 → !⊤ and !X ⊗ !Y → !(X & Y).

Exponential

Assume that \mathcal{L} is equipped with a resource modality, that is

- a comonad (!_, der, dig)
- with a symmetric monoidal structure from (L, &) to (L, ⊗): there are well-behaved isos 1 → !⊤ and !X ⊗ !Y → !(X & Y).

Then the Kleisli category $\mathcal{L}_{!}$ is intuitively the category of non-linear morphisms that we will differentiate.

- $Obj(\mathcal{L}_!) = Obj(\mathcal{L})$
- $\mathcal{L}_!(X,Y) = \mathcal{L}(!X,Y).$

Differential structure

Definition

A differential structure on \mathcal{L} is a !-coalgebra structure $\widetilde{\partial}$ on 1 & 1:

$$\widetilde{\partial}: 1 \And 1
ightarrow ! (1 \And 1)$$

such that pr_0 and \widetilde{L} are coalgebra morphisms.

Differential structure

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

A differential structure on \mathcal{L} is a !-coalgebra structure $\overline{\partial}$ on 1 & 1:

 $\widetilde{\partial}: 1 \And 1
ightarrow ! (1 \And 1)$

such that pr_0 and \widetilde{L} are coalgebra morphisms.

Remark (CD is everywhere...)

If $(\mathcal{L}, !_{-})$ is a Lafont category (ie. !_ is the cofree symmetric comonoid functor) there is exactly one differential structure, induced by (pr_0, \widetilde{L}) .

What is the link with differentiation?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Using $\widetilde{\partial}$ we can define a natural transformation $\partial_X : !\mathbf{S}X = !(1 \& 1 \multimap X) \to \mathbf{S}!X = (1 \& 1 \multimap !X),$

What is the link with differentiation?

Using $\widetilde{\partial}$ we can define a natural transformation $\partial_X : !\mathbf{S}X = !(1 \& 1 \multimap X) \to \mathbf{S}!X = (1 \& 1 \multimap !X),$ Curry transpose of

$$egin{aligned} & !(1 \And 1 \multimap X) \otimes (1 \And 1) \ & \downarrow^{\mathsf{Id} \otimes \widetilde{\partial}} \\ & !(1 \And 1 \multimap X) \otimes !(1 \And 1) \ & \downarrow^{\mu^2} \\ & !((1 \And 1 \multimap X) \otimes (1 \And 1)) \ & \downarrow^{\mathsf{Iev}} \\ & \downarrow_X \end{aligned}$$

 $\mu^2: \text{ lax monoidality } \otimes \to \otimes, \text{ derived from the monoidality } \& \to \otimes.$ ev: evaluation morphism.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\partial_X : !\mathbf{S}X \to \mathbf{S}!X$ is a distributive law.

 $\partial_X : !SX \to S!X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \to Y$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\partial_X : !SX \to S!X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \to Y$ then

 $\mathbf{D}t = (\mathbf{S}t) \ \partial_X \in \mathcal{L}_!(\mathbf{S}X, \mathbf{S}Y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\partial_X : !SX \to S!X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \to Y$ then

$$\mathsf{D}t = (\mathsf{S}t) \ \partial_X \in \mathcal{L}_!(\mathsf{S}X,\mathsf{S}Y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

can be understood intuitively as mapping $(x, u) \in SX$ (that is $x, u \in X$ summable) to $(t(x), t'(x) \cdot u) \in SY$, a summable pair.

 $\partial_X : !SX \to S!X$ is a distributive law.

If $t \in \mathcal{L}_!(X, Y) = \mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \to Y$ then

$$\mathsf{D}t = (\mathsf{S}t) \ \partial_X \in \mathcal{L}_!(\mathsf{S}X,\mathsf{S}Y)$$

can be understood intuitively as mapping $(x, u) \in SX$ (that is $x, u \in X$ summable) to $(t(x), t'(x) \cdot u) \in SY$, a summable pair. **D** is a functor (chain rule).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The simplest example: strict coherence spaces

(ロ)、(型)、(E)、(E)、 E) のQ(()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

 $E = (|E|, \frown_E)$ where |E| is a set (web) and \frown_E is a binary and symmetric relation on |E| (not required to be reflexive nor anti-reflexive).

 $E = (|E|, \frown_E)$ where |E| is a set (web) and \frown_E is a binary and symmetric relation on |E| (not required to be reflexive nor anti-reflexive).

$$\mathsf{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in x \ a \frown_E a' \}.$$

 $E = (|E|, \frown_E)$ where |E| is a set (web) and \frown_E is a binary and symmetric relation on |E| (not required to be reflexive nor anti-reflexive).

$$CI(E) = \{x \subseteq |E| \mid \forall a, a' \in x \ a \frown_E a'\}.$$

$$E \multimap F \text{ defined by } |E \multimap F| = |E| \times |F| \text{ and } (a, b) \frown_{E \multimap F} (a', b') \text{ if } a \frown_E b \Rightarrow a' \frown_F b'.$$

 $E = (|E|, \frown_E)$ where |E| is a set (web) and \frown_E is a binary and symmetric relation on |E| (not required to be reflexive nor anti-reflexive).

$$Cl(E) = \{x \subseteq |E| \mid \forall a, a' \in x \ a \frown_E a'\}.$$

$$E \multimap F \text{ defined by } |E \multimap F| = |E| \times |F| \text{ and } (a, b) \frown_{E \multimap F} (a', b')$$

$$a \frown_E b \Rightarrow a' \frown_E b'.$$

if

A D N A 目 N A E N A E N A B N A C N

Category **Scoh**: objects are the strict coherence spaces and **Scoh**(E, F) = Cl($E \multimap F$) $\subseteq |E| \times |F|$.

 $E = (|E|, \frown_E)$ where |E| is a set (web) and \frown_E is a binary and symmetric relation on |E| (not required to be reflexive nor anti-reflexive).

$$\mathsf{Cl}(E) = \{ x \subseteq |E| \mid \forall a, a' \in x \ a \frown_E a' \}.$$

 $E \multimap F$ defined by $|E \multimap F| = |E| \times |F|$ and $(a, b) \frown_{E \multimap F} (a', b')$ if $a \frown_E b \Rightarrow a' \frown_F b'$.

Category **Scoh**: objects are the strict coherence spaces and $\mathbf{Scoh}(E, F) = \mathrm{Cl}(E \multimap F) \subseteq |E| \times |F|.$

Composition: relational composition. Identity: diagonal relation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The SMC structure of SCS

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- $|1| = \{*\}$ with $* \frown_1 *$
- $|E \otimes F| = |E| \times |F|$ and $(a, b) \frown_{E \otimes F} (a', b')$ if $a \frown_E a'$ and $b \frown_F b'$.

The SMC structure of SCS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $|1| = \{*\}$ with $* \frown_1 *$
- $|E \otimes F| = |E| \times |F|$ and $(a, b) \frown_{E \otimes F} (a', b')$ if $a \frown_E a'$ and $b \frown_F b'$.
- SMCC: Scoh(G ⊗ E, F) ≃ Scoh(G, E → F) trivially maps t to {(c, (a, b)) | ((c, a), b) ∈ t}.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- $|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i|$
- $(i, a) \frown_{\&_{i \in I} E_i} (j, b)$ if $i = j \Rightarrow a \frown_{E_i} b$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i|$
- $(i, a) \frown_{\&_{i \in I} E_i} (j, b)$ if $i = j \Rightarrow a \frown_{E_i} b$.
- So that in particular $Cl(\&_{i \in I} E_i) \simeq \prod_{i \in I} Cl(E_i)$.

Fact

 $|1 \& 1| = \{0, 1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in \{0, 1\}$, so that $Cl(1 \& 1) = \mathcal{P}(\{0, 1\}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i|$
- $(i, a) \frown_{\&_{i \in I} E_i} (j, b)$ if $i = j \Rightarrow a \frown_{E_i} b$.
- So that in particular $Cl(\&_{i \in I} E_i) \simeq \prod_{i \in I} Cl(E_i)$.

Fact

 $|1 \& 1| = \{0,1\}$ with $i \frown_{1\&1} j$ for all $i, j \in \{0,1\}$, so that $Cl(1 \& 1) = \mathcal{P}(\{0,1\}).$

 $\langle \mathsf{Id}_1, 0 \rangle = \{(*,0)\}$ and $\langle 0, \mathsf{Id}_1 \rangle = \{(*,1)\}$ are trivially jointly epic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i|$
- $(i, a) \frown_{\&_{i \in I} E_i} (j, b)$ if $i = j \Rightarrow a \frown_{E_i} b$.
- So that in particular $Cl(\&_{i \in I} E_i) \simeq \prod_{i \in I} Cl(E_i)$.

Fact

$$\begin{split} |1 \& 1| &= \{0,1\} \text{ with } i \frown_{1\&1} j \text{ for all } i,j \in \{0,1\}, \text{ so that} \\ \mathsf{Cl}(1 \& 1) &= \mathcal{P}(\{0,1\}). \\ \langle \mathsf{Id}_1, 0 \rangle &= \{(*,0)\} \text{ and } \langle 0, \mathsf{Id}_1 \rangle = \{(*,1)\} \text{ are trivially jointly epic.} \\ \mathsf{Cl}(\mathsf{S} E) &= \mathsf{Cl}(1 \& 1 \multimap E) \simeq \{(x_0, x_1) \in \mathsf{Cl}(E)^2 \mid x_0 \cup x_1 \in \mathsf{Cl}(E)\} \end{split}$$
Cartesian product

- $|\&_{i \in I} E_i| = \bigcup_{i \in I} \{i\} \times |E_i|$
- $(i, a) \frown_{\&_{i \in I} E_i} (j, b)$ if $i = j \Rightarrow a \frown_{E_i} b$.
- So that in particular $Cl(\&_{i \in I} E_i) \simeq \prod_{i \in I} Cl(E_i)$.

Fact

 $|1 \& 1| = \{0, 1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in \{0, 1\}$, so that $Cl(1 \& 1) = \mathcal{P}(\{0, 1\}).$ $\langle Id_1, 0 \rangle = \{(*, 0)\}$ and $\langle 0, Id_1 \rangle = \{(*, 1)\}$ are trivially jointly epic. $Cl(SE) = Cl(1 \& 1 \multimap E) \simeq \{(x_0, x_1) \in Cl(E)^2 \mid x_0 \cup x_1 \in Cl(E)\}$ $s_0, s_1 \in Scoh(E, F)$ are summable iff $s_0 \cup s_1 \in Scoh(E, F)$ and then $s_0 + s_1 = s_0 \cup s_1.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Scoh is a model of classical LL: take $|E^{\perp}| = |E|$ and $a \frown_{E^{\perp}} b$ if $\neg(a \frown_E b)$. Then $E^{\perp \perp} = E$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Scoh is a model of classical LL: take $|E^{\perp}| = |E|$ and $a \frown_{E^{\perp}} b$ if $\neg(a \frown_E b)$. Then $E^{\perp \perp} = E$.

So ${\bf Scoh}$ has coproducts, in particular $1\oplus 1=(1^\perp\ \&\ 1^\perp)^\perp$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Scoh is a model of classical LL: take $|E^{\perp}| = |E|$ and $a \frown_{E^{\perp}} b$ if $\neg(a \frown_E b)$. Then $E^{\perp \perp} = E$.

So **Scoh** has coproducts, in particular $1 \oplus 1 = (1^{\perp} \& 1^{\perp})^{\perp}$ (notice that $1^{\perp} \neq 1$ contrarily to Girard's CS!).

Scoh is a model of classical LL: take $|E^{\perp}| = |E|$ and $a \frown_{E^{\perp}} b$ if $\neg(a \frown_E b)$. Then $E^{\perp \perp} = E$.

So **Scoh** has coproducts, in particular $1 \oplus 1 = (1^{\perp} \& 1^{\perp})^{\perp}$ (notice that $1^{\perp} \neq 1$ contrarily to Girard's CS!).

 $Cl(1 \oplus 1) = \{\emptyset, \{0\}, \{1\}\}$ so $\{0\}$ and $\{1\}$ are not summable in $1 \oplus 1$ (though they are summable in 1 & 1): the category **Scoh** is not additive.

Scoh is a model of classical LL: take $|E^{\perp}| = |E|$ and $a \frown_{E^{\perp}} b$ if $\neg(a \frown_E b)$. Then $E^{\perp \perp} = E$.

So **Scoh** has coproducts, in particular $1 \oplus 1 = (1^{\perp} \& 1^{\perp})^{\perp}$ (notice that $1^{\perp} \neq 1$ contrarily to Girard's CS!).

 $Cl(1 \oplus 1) = \{\emptyset, \{0\}, \{1\}\}$ so $\{0\}$ and $\{1\}$ are not summable in $1 \oplus 1$ (though they are summable in 1 & 1): the category **Scoh** is not additive.

Remark (SCS are not a stable model)

Contrarily to Girard's CS, SCS accept the parallel or program.

Comonoid structure of 1 & 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remember

•
$$|1| = \{*\}$$
 and $* \frown_1 *$

• $|1 \& 1| = \{0, 1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in \{0, 1\}$, so that $Cl(1 \& 1) = \mathcal{P}(\{0, 1\}).$

Comonoid structure of 1 & 1

Remember

•
$$|1| = \{*\}$$
 and $* \frown_1 *$

• $|1 \& 1| = \{0, 1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in \{0, 1\}$, so that $Cl(1 \& 1) = \mathcal{P}(\{0, 1\}).$

1 & 1 as a comonoid

- counit: $pr_0 = \{(0, *) \in \textbf{Scoh}(1 \And 1, 1)\}$
- comultiplication: $\widetilde{\mathsf{L}} \in \textbf{Scoh}(1 \And 1, (1 \And 1) \otimes (1 \And 1))$ given by

 $\widetilde{L} = \{(0,(0,0))\} \cup \{(1,(0,1)),(1,(1,0))\}$

The cofree exponential: Scoh is Lafont

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{\mathrm{fin}}(|E|).$

The cofree exponential: Scoh is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{\mathrm{fin}}(|E|).$

Instead we use finite multisets: $|!E| = \mathcal{M}_{\mathrm{fin}}(|E|)$ and

$$[a_1,\ldots,a_n] \frown_{!E} [b_1,\ldots,b_k]$$
 if $\forall i,j \ a_i \frown_E \ b_j$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The cofree exponential: Scoh is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{fin}(|E|)$.

Instead we use finite multisets: $|!E| = \mathcal{M}_{fin}(|E|)$ and

$$[a_1,\ldots,a_n] \frown_{!E} [b_1,\ldots,b_k]$$
 if $\forall i,j \ a_i \frown_E \ b_j$.

Then
$$\tilde{\partial} \in \mathbf{Scoh}(1 \& 1, !(1 \& 1))$$
 is
 $\tilde{\partial} = \{(i, [i_1, \dots, i_k]) \mid i, i_1, \dots, i_k \in \{0, 1\} \text{ and } i = i_1 + \dots + i_k\}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

that is

- either i = 0 and all the i_j 's are = 0
- or i = 1 and all the i_j 's = 0 but one which = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remember that $\mathbf{S}E = (1 \& 1 \multimap E)$. So that $|\mathbf{S}E| = \{0, 1\} \times |E|$ and $(i, a) \frown_{\mathbf{S}E} (j, b) \Leftrightarrow a \frown_E b$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remember that $SE = (1 \& 1 \multimap E)$. So that $|SE| = \{0, 1\} \times |E|$ and $(i, a) \frown_{SE} (j, b) \Leftrightarrow a \frown_{E} b$. Given $t \in Scoh(!E, F)$ we get $Dt \in Scoh(!SE, SF)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remember that $\mathbf{S}E = (1 \& 1 \multimap E)$.

So that $|\mathbf{S}E| = \{0,1\} \times |E|$ and $(i,a) \frown_{\mathbf{S}E} (j,b) \Leftrightarrow a \frown_E b$.

Given $t \in \mathbf{Scoh}(!E, F)$ we get $\mathbf{D}t \in \mathbf{Scoh}(!SE, SF)$. Remember that intuitively

 $\mathbf{D}t(x,u) = (t(x),t'(x)\cdot u).$

Remember that $\mathbf{S}E = (1 \& 1 \multimap E)$.

So that $|\mathbf{S}E| = \{0,1\} \times |E|$ and $(i,a) \frown_{\mathbf{S}E} (j,b) \Leftrightarrow a \frown_E b$.

Given $t \in \mathbf{Scoh}(!E, F)$ we get $\mathbf{D}t \in \mathbf{Scoh}(!SE, SF)$. Remember that intuitively

$$\mathbf{D}t(x,u) = (t(x),t'(x)\cdot u).$$

Fact

 $\mathbf{D}t = \{([(0, a_1, \dots, (0, a_n)], (0, b)) \mid ([a_1, \dots, a_n], b) \in t\}$

うせん 同一人用 人用 人用 人口 マ

Remember that $\mathbf{S}E = (1 \& 1 \multimap E)$.

So that $|\mathbf{S}E| = \{0,1\} \times |E|$ and $(i,a) \frown_{\mathbf{S}E} (j,b) \Leftrightarrow a \frown_E b$.

Given $t \in \mathbf{Scoh}(!E, F)$ we get $\mathbf{D}t \in \mathbf{Scoh}(!SE, SF)$. Remember that intuitively

$$\mathbf{D}t(x,u) = (t(x),t'(x)\cdot u).$$

Fact

$$Dt = \{ ([(0, a_1, \dots, (0, a_n)], (0, b)) \mid ([a_1, \dots, a_n], b) \in t \} \\ \cup \{ ([(0, a_1, \dots, (0, a_n), (1, a)], (1, b)) \mid ([a_1, \dots, a_n, a], b) \in t \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely "cartesian theory" of CD without references to LL.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely "cartesian theory" of CD without references to LL.
- There is also a syntactic version of CD, a "CD PCF" which
 - has a differentiation operation at all types
 - as well as general recursion (fixpoint operators at all types)
 - and features at the same time a fully deterministic operational semantics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely "cartesian theory" of CD without references to LL.
- There is also a syntactic version of CD, a "CD PCF" which
 - has a differentiation operation at all types
 - as well as general recursion (fixpoint operators at all types)
 - and features at the same time a fully deterministic operational semantics.

It was impossible to have all these features in the differential $\lambda\text{-calculus.}$