Coherent differentiation

LHC days 2023
7 June

Thomas Ehrhard
IRIF, CNRS, Inria and Université Paris Cité

Linear Logic

Girard's LL (1986): most (all?) denotational models have an underlying structure similar to linear algebra

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.

Linear Logic

Girard's LL (1986): most (all?) denotational models have an underlying structure similar to linear algebra

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.
Exponential resource modality: connects the linear and non-linear worlds (categories).

Linear Logic

Girard's LL (1986): most (all?) denotational models have an underlying structure similar to linear algebra

- tensor product
- linear function spaces
- direct product and coproduct
- duality.

There are also non linear morphisms.
Exponential resource modality: connects the linear and non-linear worlds (categories).
Dereliction: we can forget that a function is linear.

Differentiation in LL

Introduces a converse operation.

- dereliction: forget linearity of a morphism linear \rightsquigarrow non-linear

Differentiation in LL

Introduces a converse operation.

- dereliction: forget linearity of a morphism linear \rightsquigarrow non-linear
- differentiation: best linear approximation of a morphism non-linear \rightsquigarrow linear

Differentiation in LL

Introduces a converse operation.

- dereliction: forget linearity of a morphism linear \rightsquigarrow non-linear
- differentiation: best linear approximation of a morphism non-linear \rightsquigarrow linear
reformulating logically the standard laws of the differential calculus.
\rightsquigarrow the differential λ-calculus:

$$
\frac{\Gamma \vdash M: A \Rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash \mathrm{D} M \cdot N: A \Rightarrow B}
$$

And DM $\cdot N$ is linear in N (and also in M).

Intuition

The derivative of M should be $M^{\prime}: A \Rightarrow(A \multimap B)$. Then intuitively

$$
\mathrm{D} M \cdot N=\lambda x: A \cdot\left(M^{\prime} x\right)(N)
$$

Strong non-determinism of DiLL

Requires apparently a deduction rule

$$
\frac{\Gamma \vdash M: A \quad \Gamma \vdash N: A}{\Gamma \vdash M+N: A}(+)
$$

Strong non-determinism of DiLL

Requires apparently a deduction rule

$$
\frac{\Gamma \vdash M: A \quad \Gamma \vdash N: A}{\Gamma \vdash M+N: A}(+)
$$

for Leibniz

$$
\frac{d f(x, x)}{d x} \cdot u=f_{1}^{\prime}(x, x) \cdot u+f_{2}^{\prime}(x, x) \cdot u
$$

Interaction between differentiation and contraction.

\rightsquigarrow models of DiLL are additive categories

Leibniz \rightsquigarrow the models \mathcal{L} of DiLL are additive categories:

- $\mathcal{L}(X, Y)$ is a commutative monoid (with additive notations) for each objects X, Y of \mathcal{L}
- morphism composition is bilinear.

\rightsquigarrow models of DiLL are additive categories

Leibniz \rightsquigarrow the models \mathcal{L} of DiLL are additive categories:

- $\mathcal{L}(X, Y)$ is a commutative monoid (with additive notations) for each objects X, Y of \mathcal{L}
- morphism composition is bilinear.

Remark

If \mathcal{L} is cartesian and additive then the cartesian product is also a coproduct, the terminal object is initial: $\&=\oplus$.
\rightsquigarrow some LL degeneracy $=$ non-determinism.

But. . .

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.

But. . .

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by LL is that the linear/non-linear dichotomy does not require additivity.
In probabilistic coherence spaces (Pcoh) non-linear morphisms are obviously differentiable: they are analytic functions,

But. . .

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by $L L$ is that the linear/non-linear dichotomy does not require additivity.
In probabilistic coherence spaces (Pcoh) non-linear morphisms are obviously differentiable: they are analytic functions, and Pcoh is not an additive category.

But. . .

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by $L L$ is that the linear/non-linear dichotomy does not require additivity. In probabilistic coherence spaces (Pcoh) non-linear morphisms are obviously differentiable: they are analytic functions, and Pcoh is not an additive category.

Question

Analytic functions have derivatives: what is the status of derivatives in such models?

But. . .

... many interesting models of LL are not additive categories.

Remark

One of the main new ideas brought by $L L$ is that the linear/non-linear dichotomy does not require additivity. In probabilistic coherence spaces (Pcoh) non-linear morphisms are obviously differentiable: they are analytic functions, and Pcoh is not an additive category.

Question

Analytic functions have derivatives: what is the status of derivatives in such models?

At first sight they seem to live outside...

... a concrete example

In Pcoh the type 1 of LL is interpreted as

$$
[0,1] \subseteq \mathbb{R}
$$

... a concrete example

In Pcoh the type 1 of LL is interpreted as

$$
[0,1] \subseteq \mathbb{R}
$$

A non-linear morphism, that is, an element of $\mathcal{L}_{!}(1,1)$, is an analytic function

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto \sum_{n=0}^{\infty} a_{n} x^{n}
\end{aligned}
$$

... a concrete example

In Pcoh the type 1 of LL is interpreted as

$$
[0,1] \subseteq \mathbb{R}
$$

A non-linear morphism, that is, an element of $\mathcal{L}_{!}(1,1)$, is an analytic function

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto \sum_{n=0}^{\infty} a_{n} x^{n}
\end{aligned}
$$

for a (uniquely determined) sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of elements of $\mathbb{R}_{\geq 0}$ such that $\sum_{n \in \mathbb{N}} a_{n} \leq 1$.

... a concrete example

In Pcoh the type 1 of LL is interpreted as

$$
[0,1] \subseteq \mathbb{R}
$$

A non-linear morphism, that is, an element of $\mathcal{L}_{!}(1,1)$, is an analytic function

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto \sum_{n=0}^{\infty} a_{n} x^{n}
\end{aligned}
$$

for a (uniquely determined) sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of elements of $\mathbb{R}_{\geq 0}$ such that $\sum_{n \in \mathbb{N}} a_{n} \leq 1$.

Problem

$f^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$ has no reason to satisfy $f^{\prime} \in \mathcal{L}_{!}(1,1)$.

For instance: f defined by $f(x)=1-\sqrt{1-x}$ belongs to Pcoh $_{!}(1,1)$

For instance: f defined by $f(x)=1-\sqrt{1-x}$ belongs to Pcoh ${ }_{!}(1,1)$ but

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{1-x}}
$$

is not even defined on the whole of $[0,1]$ and is not bounded on $[0,1) \ldots$

For instance: f defined by $f(x)=1-\sqrt{1-x}$ belongs to Pcoh ${ }_{!}(1,1)$
but

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{1-x}}
$$

is not even defined on the whole of $[0,1]$ and is not bounded on $[0,1) \ldots$
\ldots and we cannot reject f because it is the interpretation of a program!

Key observation, part 1

Key observation, part 1

If $f \in \operatorname{Pcoh}_{!}(1,1)$ and

$$
x, u \in[0,1] \text { satisfy } x+u \in[0,1]
$$

Key observation, part 1

If $f \in \operatorname{Pcoh}_{!}(1,1)$ and

$$
x, u \in[0,1] \text { satisfy } x+u \in[0,1]
$$

then by the Taylor formula at x

$$
f(x+u)=f(x)+f^{\prime}(x) u+\frac{1}{2} f^{\prime \prime}(x) u^{2}+\cdots \in[0,1]
$$

Key observation, part 1

If $f \in \operatorname{Pcoh}_{!}(1,1)$ and

$$
x, u \in[0,1] \text { satisfy } x+u \in[0,1]
$$

then by the Taylor formula at x

$$
f(x+u)=f(x)+f^{\prime}(x) u+\frac{1}{2} f^{\prime \prime}(x) u^{2}+\cdots \in[0,1]
$$

and all these derivatives are ≥ 0, so we have

$$
f(x)+f^{\prime}(x) u \in[0,1] .
$$

So if we set $S=\left\{(x, u) \in[0,1]^{2} \mid x+u \in[0,1]\right\}$ we can define

$$
\begin{aligned}
\mathrm{D} f: S & \rightarrow S \\
(x, u) & \mapsto\left(f(x), f^{\prime}(x) u\right)
\end{aligned}
$$

similar to $\mathrm{T} f$, the tangent bundle functor.

So if we set $S=\left\{(x, u) \in[0,1]^{2} \mid x+u \in[0,1]\right\}$ we can define

$$
\begin{aligned}
\mathrm{D} f: S & \rightarrow S \\
(x, u) & \mapsto\left(f(x), f^{\prime}(x) u\right)
\end{aligned}
$$

similar to $\mathrm{T} f$, the tangent bundle functor.

Key observation, part 2

S can be seen as an object of Pcoh and

$$
\forall f \in \operatorname{Pcoh}_{!}(1,1) \quad \mathrm{D} f \in \operatorname{Pcoh}_{!}(S, S)
$$

Can be extended to all the objects of Pcoh, not only 1 .
\rightsquigarrow Coherent Differentiation

An important case of coherent differentiation: the elementary situation

Summability in a linear category

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1 , internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y) ;$

Summability in a linear category

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1 , internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y) ;$
- \mathcal{L} has 0 -morphisms $0 \in \mathcal{L}(X, Y)$ with $0 t=0$ and $t 0=0$;

Summability in a linear category

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1 , internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y) ;$
- \mathcal{L} has 0 -morphisms $0 \in \mathcal{L}(X, Y)$ with $0 t=0$ and $t 0=0$;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_{i}$ with projections pr_{i} and if $\left(t_{i} \in \mathcal{L}\left(Y, X_{i}\right)\right)_{i \in I}$ then $\left\langle t_{i}\right\rangle_{i \in I} \in \mathcal{L}\left(Y, \&_{i \in I} X_{i}\right)$.

Summability in a linear category

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1 , internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y) ;$
- \mathcal{L} has 0 -morphisms $0 \in \mathcal{L}(X, Y)$ with $0 t=0$ and $t 0=0$;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_{i}$ with projections pr_{i} and if $\left(t_{i} \in \mathcal{L}\left(Y, X_{i}\right)\right)_{i \in I}$ then $\left\langle t_{i}\right\rangle_{i \in I} \in \mathcal{L}\left(Y, \&_{i \in I} X_{i}\right)$.
We don't assume \mathcal{L} to be additive.

Summability in a linear category

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1 , internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y) ;$
- \mathcal{L} has 0 -morphisms $0 \in \mathcal{L}(X, Y)$ with $0 t=0$ and $t 0=0$;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_{i}$ with projections pr_{i} and if $\left(t_{i} \in \mathcal{L}\left(Y, X_{i}\right)\right)_{i \in I}$ then $\left\langle t_{i}\right\rangle_{i \in I} \in \mathcal{L}\left(Y, \&_{i \in I} X_{i}\right)$.
We don't assume \mathcal{L} to be additive.

Remark (some sums do exist)

$\left\langle\operatorname{ld}_{1}, 0\right\rangle,\left\langle 0, \operatorname{Id}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$

Summability in a linear category

Assume:

- \mathcal{L} is a SMCC, tensor $X \otimes Y$, tensor unit 1 , internal hom $\mathcal{L}(Z \otimes X, Y) \simeq \mathcal{L}(Z, X \multimap Y) ;$
- \mathcal{L} has 0 -morphisms $0 \in \mathcal{L}(X, Y)$ with $0 t=0$ and $t 0=0$;
- \mathcal{L} is cartesian, cartesian product $\&_{i \in I} X_{i}$ with projections pr_{i} and if $\left(t_{i} \in \mathcal{L}\left(Y, X_{i}\right)\right)_{i \in I}$ then $\left\langle t_{i}\right\rangle_{i \in I} \in \mathcal{L}\left(Y, \&_{i \in I} X_{i}\right)$.
We don't assume \mathcal{L} to be additive.

Remark (some sums do exist)

$\left\langle\operatorname{ld}_{1}, 0\right\rangle,\left\langle 0, \operatorname{ld}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$
have a sum $\left\langle\operatorname{Id}_{1}, 0\right\rangle+\left\langle 0, \operatorname{ld}_{1}\right\rangle=\left\langle\operatorname{ld}_{1}, \operatorname{ld}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$.

The functor of summable pairs

$\mathbf{S}: \mathcal{L} \rightarrow \mathcal{L}$ given by

$$
\mathbf{S} X=(1 \& 1 \multimap X)
$$

Intuition

A "point" of $\mathbf{S} X$ is a pair of two points of X whose sum is well defined.

The functor of summable pairs

$\mathbf{S}: \mathcal{L} \rightarrow \mathcal{L}$ given by

$$
\mathbf{S} X=(1 \& 1 \multimap X)
$$

Intuition

A "point" of $\mathbf{S} X$ is a pair of two points of X whose sum is well defined.

- $\pi_{0}=\left(\left\langle\operatorname{ld}_{1}, 0\right\rangle \multimap X\right) \in \mathcal{L}(\mathbf{S} X, X)$ fst component of pairs
- $\pi_{1}=\left(\left\langle 0, \mathrm{Id}_{1}\right\rangle \multimap X\right) \in \mathcal{L}(\mathbf{S} X, X)$ snd component of pairs

The functor of summable pairs

$\mathbf{S}: \mathcal{L} \rightarrow \mathcal{L}$ given by

$$
\mathbf{S} X=(1 \& 1 \multimap X)
$$

Intuition

A "point" of $\mathbf{S} X$ is a pair of two points of X whose sum is well defined.

- $\pi_{0}=\left(\left\langle\operatorname{ld}_{1}, 0\right\rangle \multimap X\right) \in \mathcal{L}(\mathbf{S} X, X)$ fst component of pairs
- $\pi_{1}=\left(\left\langle 0, \mathrm{Id}_{1}\right\rangle \multimap X\right) \in \mathcal{L}(\mathbf{S} X, X)$ snd component of pairs
- $\sigma=\left(\left\langle\operatorname{ld}_{1}, \operatorname{ld}_{1}\right\rangle \multimap X\right) \in \mathcal{L}(\mathbf{S} X, X)$ sum of pairs.

Assume $\left\langle\mathrm{Id}_{1}, 0\right\rangle,\left\langle 0, \mathrm{Id}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$ are jointly epic and hence $\pi_{0}, \pi_{1} \in \mathcal{L}(\mathbf{S} X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Assume $\left\langle\operatorname{ld}_{1}, 0\right\rangle,\left\langle 0, \operatorname{ld}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$ are jointly epic and hence $\pi_{0}, \pi_{1} \in \mathcal{L}(\mathbf{S} X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Definition (summability and sum of morphisms)

$f_{0}, f_{1} \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, \mathbf{S} X)$ such that $\pi_{i} h=f_{i}(i=0,1)$.

Assume $\left\langle\operatorname{ld}_{1}, 0\right\rangle,\left\langle 0, \operatorname{ld}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$ are jointly epic and hence $\pi_{0}, \pi_{1} \in \mathcal{L}(\mathbf{S} X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Definition (summability and sum of morphisms)

$f_{0}, f_{1} \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, \mathbf{S} X)$ such that $\pi_{i} h=f_{i}(i=0,1)$.
This h is unique: $\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}=h$ (witness of summability).

Assume $\left\langle\mathrm{Id}_{1}, 0\right\rangle,\left\langle 0, \mathrm{Id}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$ are jointly epic and hence $\pi_{0}, \pi_{1} \in \mathcal{L}(\mathbf{S} X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Definition (summability and sum of morphisms)

$f_{0}, f_{1} \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, \mathbf{S} X)$ such that $\pi_{i} h=f_{i}(i=0,1)$.
This h is unique: $\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}=h$ (witness of summability).
$f_{0}+f_{1}=\sigma\left\langle f_{0}, f_{1}\right\rangle \mathbf{s}$.

Assume $\left\langle\mathrm{Id}_{1}, 0\right\rangle,\left\langle 0, \mathrm{Id}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$ are jointly epic and hence $\pi_{0}, \pi_{1} \in \mathcal{L}(\mathbf{S} X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Definition (summability and sum of morphisms)

$f_{0}, f_{1} \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, \mathbf{S} X)$ such that $\pi_{i} h=f_{i}(i=0,1)$.
This h is unique: $\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}=h$ (witness of summability).
$f_{0}+f_{1}=\sigma\left\langle f_{0}, f_{1}\right\rangle \mathbf{s}$.

Fact

If \mathcal{L} satisfies an additional witness property then, equipped with 0 and + , each $\mathcal{L}(X, Y)$ is a commutative partial monoid.

Assume $\left\langle\mathrm{Id}_{1}, 0\right\rangle,\left\langle 0, \mathrm{Id}_{1}\right\rangle \in \mathcal{L}(1,1 \& 1)$ are jointly epic and hence $\pi_{0}, \pi_{1} \in \mathcal{L}(\mathbf{S} X, X)$ are jointly monic: this is a property of \mathcal{L} which holds very often.

Definition (summability and sum of morphisms)

$f_{0}, f_{1} \in \mathcal{L}(Y, X)$ are summable if there is $h \in \mathcal{L}(Y, \mathbf{S} X)$ such that $\pi_{i} h=f_{i}(i=0,1)$.
This h is unique: $\left\langle f_{0}, f_{1}\right\rangle_{\mathbf{s}}=h$ (witness of summability).
$f_{0}+f_{1}=\sigma\left\langle f_{0}, f_{1}\right\rangle \mathbf{s}$.

Fact

If \mathcal{L} satisfies an additional witness property then, equipped with 0 and + , each $\mathcal{L}(X, Y)$ is a commutative partial monoid.
Composition is compatible with this structure.

Comonoid structure of $1 \& 1$

When \mathcal{L} satisfies these conditions, $1 \& 1$ has a structure of commutative comonoid

$$
\begin{gathered}
\mathrm{pr}_{0}: 1 \& 1 \rightarrow 1 \quad \text { fst projection of } \& \\
\widetilde{\mathrm{~L}}: 1 \& 1 \rightarrow(1 \& 1) \otimes(1 \& 1)
\end{gathered}
$$

fully characterized by

$$
\begin{aligned}
& \tilde{\mathrm{L}}\left\langle\operatorname{ld}_{1}, 0\right\rangle=\left\langle\operatorname{ld}_{1}, 0\right\rangle \otimes\left\langle\operatorname{ld}_{1}, 0\right\rangle \\
& \tilde{\mathrm{L}}\left\langle 0, \operatorname{ld}_{1}\right\rangle=\left\langle\mathrm{Id}_{1}, 0\right\rangle \otimes\left\langle 0, \operatorname{ld}_{1}\right\rangle+\left\langle 0, \operatorname{ld}_{1}\right\rangle \otimes\left\langle\mathrm{Id}_{1}, 0\right\rangle
\end{aligned}
$$

Comonoid structure of $1 \& 1$

When \mathcal{L} satisfies these conditions, $1 \& 1$ has a structure of commutative comonoid

$$
\begin{gathered}
\mathrm{pr}_{0}: 1 \& 1 \rightarrow 1 \quad \text { fst projection of } \& \\
\widetilde{L}: 1 \& 1 \rightarrow(1 \& 1) \otimes(1 \& 1)
\end{gathered}
$$

fully characterized by

$$
\begin{aligned}
\widetilde{\mathrm{L}}\left\langle\mathrm{Id}_{1}, 0\right\rangle & =\left\langle\operatorname{ld}_{1}, 0\right\rangle \otimes\left\langle\mathrm{Id}_{1}, 0\right\rangle \\
\widetilde{\mathrm{L}}\left\langle 0, \operatorname{ld}_{1}\right\rangle & =\left\langle\mathrm{Id}_{1}, 0\right\rangle \otimes\left\langle 0, \operatorname{ld}_{1}\right\rangle+\left\langle 0, \operatorname{ld}_{1}\right\rangle \otimes\left\langle\mathrm{Id}_{1}, 0\right\rangle
\end{aligned}
$$

NB: this sum is well defined (by the witness assumption).
Remember that $\left\langle\mathrm{Id}_{1}, 0\right\rangle$ and $\left\langle 0, \mathrm{Id}_{1}\right\rangle$ are jointly epic.

Exponential

Assume that \mathcal{L} is equipped with a resource modality, that is

- a comonad (!, der, dig)
- with a symmetric monoidal structure from $(\mathcal{L}, \&)$ to (\mathcal{L}, \otimes) : there are well-behaved isos $1 \rightarrow!\top$ and $!X \otimes!Y \rightarrow!(X \& Y)$.

Exponential

Assume that \mathcal{L} is equipped with a resource modality, that is

- a comonad (!, der, dig)
- with a symmetric monoidal structure from $(\mathcal{L}, \&)$ to (\mathcal{L}, \otimes) : there are well-behaved isos $1 \rightarrow!\top$ and $!X \otimes!Y \rightarrow!(X \& Y)$.

Then the Kleisli category $\mathcal{L}_{!}$is intuitively the category of non-linear morphisms that we will differentiate.

- $\operatorname{Obj}\left(\mathcal{L}_{!}\right)=\operatorname{Obj}(\mathcal{L})$
- $\mathcal{L}_{!}(X, Y)=\mathcal{L}(!X, Y)$.

Differential structure

Definition

A differential structure on \mathcal{L} is a !-coalgebra structure $\widetilde{\partial}$ on $1 \& 1$:

$$
\widetilde{\partial}: 1 \& 1 \rightarrow!(1 \& 1)
$$

such that pr_{0} and $\widetilde{\mathrm{L}}$ are coalgebra morphisms.

Differential structure

Definition

A differential structure on \mathcal{L} is a !-coalgebra structure $\widetilde{\partial}$ on $1 \& 1$:

$$
\widetilde{\partial}: 1 \& 1 \rightarrow!(1 \& 1)
$$

such that pr_{0} and $\widetilde{\mathrm{L}}$ are coalgebra morphisms.

Remark (CD is everywhere...)

If (\mathcal{L}, ! $)$) is a Lafont category (ie. !- is the cofree symmetric comonoid functor) there is exactly one differential structure, induced by $\left(\mathrm{pr}_{0}, \widetilde{\mathrm{~L}}\right)$.

What is the link with differentiation?

Using $\widetilde{\partial}$ we can define a natural transformation
$\partial_{X}:!\mathbf{S} X=!(1 \& 1 \multimap X) \rightarrow \mathbf{S}!X=(1 \& 1 \multimap!X)$,

What is the link with differentiation?

Using $\widetilde{\partial}$ we can define a natural transformation $\partial_{X}:!\mathbf{S} X=!(1 \& 1 \multimap X) \rightarrow \mathbf{S}!X=(1 \& 1 \multimap!X)$, Curry transpose of

$$
\begin{aligned}
& !(1 \& 1 \multimap X) \otimes(1 \& 1) \\
& \downarrow \mathrm{Id} \otimes \tilde{\partial} \\
& !(1 \& 1 \multimap X) \otimes!(1 \& 1) \\
& \downarrow \mu^{2} \\
& !((1 \& 1 \multimap X) \otimes(1 \& 1)) \\
& \begin{array}{l}
\downarrow \operatorname{lev} \\
!X
\end{array}
\end{aligned}
$$

μ^{2} : lax monoidality $\otimes \rightarrow \otimes$, derived from the monoidality $\& \rightarrow \otimes$. ev: evaluation morphism.

Fact (extending S to $\mathcal{L}_{!}$thanks to $\partial \rightsquigarrow$ differentiation functor)
$\partial_{X}:!\mathbf{S} X \rightarrow \mathbf{S}!X$ is a distributive law.

Fact (extending S to $\mathcal{L}_{!}$thanks to $\partial \rightsquigarrow$ differentiation functor)
$\partial_{X}:!\mathbf{S} X \rightarrow \mathbf{S}!X$ is a distributive law.
If $t \in \mathcal{L}_{!}(X, Y)=\mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \rightarrow Y$

Fact (extending S to \mathcal{L} ! thanks to $\partial \rightsquigarrow$ differentiation functor)
$\partial_{X}:!\mathbf{S} X \rightarrow \mathbf{S}!X$ is a distributive law.
If $t \in \mathcal{L}_{!}(X, Y)=\mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \rightarrow Y$ then

$$
\mathbf{D} t=(\mathbf{S} t) \partial_{X} \in \mathcal{L}_{!}(\mathbf{S} X, \mathbf{S} Y)
$$

Fact (extending \mathbf{S} to $\mathcal{L}_{!}$thanks to $\partial \rightsquigarrow$ differentiation functor)

$\partial_{X}:!\mathbf{S} X \rightarrow \mathbf{S}!X$ is a distributive law.
If $t \in \mathcal{L}_{!}(X, Y)=\mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \rightarrow Y$ then

$$
\mathbf{D} t=(\mathbf{S} t) \partial_{X} \in \mathcal{L}_{!}(\mathbf{S} X, \mathbf{S} Y)
$$

can be understood intuitively as mapping $(x, u) \in \mathbf{S} X$ (that is $x, u \in X$ summable) to $\left(t(x), t^{\prime}(x) \cdot u\right) \in \mathbf{S} Y$, a summable pair.

Fact (extending \mathbf{S} to $\mathcal{L}_{!}$thanks to $\partial \rightsquigarrow$ differentiation functor)

$\partial_{X}:!\mathbf{S} X \rightarrow \mathbf{S}!X$ is a distributive law.
If $t \in \mathcal{L}!(X, Y)=\mathcal{L}(!X, Y)$ seen as a non-linear morphism $X \rightarrow Y$ then

$$
\mathbf{D} t=(\mathbf{S} t) \partial_{X} \in \mathcal{L}_{!}(\mathbf{S} X, \mathbf{S} Y)
$$

can be understood intuitively as mapping $(x, u) \in \mathbf{S} X$ (that is $x, u \in X$ summable) to $\left(t(x), t^{\prime}(x) \cdot u\right) \in \mathbf{S} Y$, a summable pair.

D is a functor (chain rule).

The simplest example: strict coherence spaces

Strict Coherence Spaces (SCS): a simplified version of Girard's coherence spaces due du F. Lamarche (1995).

Strict Coherence Spaces (SCS): a simplified version of Girard's coherence spaces due du F. Lamarche (1995).
$E=\left(|E|, \frown_{E}\right)$ where $|E|$ is a set (web) and \frown_{E} is a binary and symmetric relation on $|E|$ (not required to be reflexive nor anti-reflexive).

Strict Coherence Spaces (SCS): a simplified version of Girard's coherence spaces due du F. Lamarche (1995).
$E=\left(|E|, \frown_{E}\right)$ where $|E|$ is a set (web) and \frown_{E} is a binary and symmetric relation on $|E|$ (not required to be reflexive nor anti-reflexive).
$\mathrm{Cl}(E)=\left\{x \subseteq|E| \mid \forall a, a^{\prime} \in x a \frown_{E} a^{\prime}\right\}$.

Strict Coherence Spaces (SCS): a simplified version of Girard's coherence spaces due du F. Lamarche (1995).
$E=\left(|E|, \frown_{E}\right)$ where $|E|$ is a set (web) and \frown_{E} is a binary and symmetric relation on $|E|$ (not required to be reflexive nor anti-reflexive).
$\mathrm{Cl}(E)=\left\{x \subseteq|E| \mid \forall a, a^{\prime} \in x a \frown_{E} a^{\prime}\right\}$.
$E \multimap F$ defined by $|E \multimap F|=|E| \times|F|$ and $(a, b) \frown_{E \multimap F}\left(a^{\prime}, b^{\prime}\right)$ if $a \frown_{E} b \Rightarrow a^{\prime} \frown_{F} b^{\prime}$.

Strict Coherence Spaces (SCS): a simplified version of Girard's coherence spaces due du F. Lamarche (1995).
$E=\left(|E|, \frown_{E}\right)$ where $|E|$ is a set (web) and \frown_{E} is a binary and symmetric relation on $|E|$ (not required to be reflexive nor anti-reflexive).
$\mathrm{Cl}(E)=\left\{x \subseteq|E| \mid \forall a, a^{\prime} \in x a \frown_{E} a^{\prime}\right\}$.
$E \multimap F$ defined by $|E \multimap F|=|E| \times|F|$ and $(a, b) \frown_{E \multimap F}\left(a^{\prime}, b^{\prime}\right)$ if $a \frown_{E} b \Rightarrow a^{\prime} \frown_{F} b^{\prime}$.
Category Scoh: objects are the strict coherence spaces and $\operatorname{Scoh}(E, F)=\mathrm{Cl}(E \multimap F) \subseteq|E| \times|F|$.

Strict Coherence Spaces (SCS): a simplified version of Girard's coherence spaces due du F. Lamarche (1995).
$E=\left(|E|, \frown_{E}\right)$ where $|E|$ is a set (web) and \frown_{E} is a binary and symmetric relation on $|E|$ (not required to be reflexive nor anti-reflexive).
$\mathrm{Cl}(E)=\left\{x \subseteq|E| \mid \forall a, a^{\prime} \in x a \frown_{E} a^{\prime}\right\}$.
$E \multimap F$ defined by $|E \multimap F|=|E| \times|F|$ and $(a, b) \frown_{E \rightarrow F}\left(a^{\prime}, b^{\prime}\right)$ if $a \frown_{E} b \Rightarrow a^{\prime} \frown_{F} b^{\prime}$.
Category Scoh: objects are the strict coherence spaces and $\operatorname{Scoh}(E, F)=\operatorname{Cl}(E \multimap F) \subseteq|E| \times|F|$.
Composition: relational composition. Identity: diagonal relation.

The SMC structure of SCS

- $|1|=\{*\}$ with $* \frown_{1} *$
- $|E \otimes F|=|E| \times|F|$ and $(a, b) \frown_{E \otimes F}\left(a^{\prime}, b^{\prime}\right)$ if $a \frown_{E} a^{\prime}$ and $b \frown_{F} b^{\prime}$.

The SMC structure of SCS

- $|1|=\{*\}$ with $* \frown_{1} *$
- $|E \otimes F|=|E| \times|F|$ and $(a, b) \frown_{E \otimes F}\left(a^{\prime}, b^{\prime}\right)$ if $a \frown_{E} a^{\prime}$ and $b \frown_{F} b^{\prime}$.
- SMCC: $\operatorname{Scoh}(G \otimes E, F) \simeq \operatorname{Scoh}(G, E \multimap F)$ trivially maps t to $\{(c,(a, b)) \mid((c, a), b) \in t\}$.

Cartesian product

- $\left|\&_{i \in I} E_{i}\right|=\bigcup_{i \in I}\{i\} \times\left|E_{i}\right|$
- $(i, a) \frown_{\& \in I} E_{i}(j, b)$ if $i=j \Rightarrow a \frown_{i} b$.

Cartesian product

- $\left|\&_{i \in I} E_{i}\right|=\bigcup_{i \in I}\{i\} \times\left|E_{i}\right|$
- $(i, a) \frown_{\& i \in I} E_{i}(j, b)$ if $i=j \Rightarrow a \frown_{E_{i}} b$.
- So that in particular $\mathrm{Cl}\left(\&_{i \in I} E_{i}\right) \simeq \prod_{i \in I} \mathrm{Cl}\left(E_{i}\right)$.

Fact

$|1 \& 1|=\{0,1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in\{0,1\}$, so that $\mathrm{Cl}(1 \& 1)=\mathcal{P}(\{0,1\})$.

Cartesian product

- $\left|\&_{i \in I} E_{i}\right|=\bigcup_{i \in I}\{i\} \times\left|E_{i}\right|$
- $(i, a) \frown_{\&_{i \in I}} E_{i}(j, b)$ if $i=j \Rightarrow a \frown_{E_{i}} b$.
- So that in particular $\mathrm{Cl}\left(\&_{i \in I} E_{i}\right) \simeq \prod_{i \in I} \mathrm{Cl}\left(E_{i}\right)$.

Fact

$|1 \& 1|=\{0,1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in\{0,1\}$, so that
$\mathrm{Cl}(1 \& 1)=\mathcal{P}(\{0,1\})$.
$\left\langle\mathrm{Id}_{1}, 0\right\rangle=\{(*, 0)\}$ and $\left\langle 0, \mathrm{Id}_{1}\right\rangle=\{(*, 1)\}$ are trivially jointly epic.

Cartesian product

- $\left|\&_{i \in I} E_{i}\right|=\bigcup_{i \in I}\{i\} \times\left|E_{i}\right|$
- $(i, a) \frown_{\&_{i \in I}} E_{i}(j, b)$ if $i=j \Rightarrow a \frown_{E_{i}} b$.
- So that in particular $\mathrm{Cl}\left(\&_{i \in I} E_{i}\right) \simeq \prod_{i \in I} \mathrm{Cl}\left(E_{i}\right)$.

Fact

$|1 \& 1|=\{0,1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in\{0,1\}$, so that
$\mathrm{Cl}(1 \& 1)=\mathcal{P}(\{0,1\})$.
$\left\langle\mathrm{Id}_{1}, 0\right\rangle=\{(*, 0)\}$ and $\left\langle 0, \mathrm{Id}_{1}\right\rangle=\{(*, 1)\}$ are trivially jointly epic.
$\mathrm{Cl}(\mathbf{S} E)=\mathrm{Cl}(1 \& 1 \multimap E) \simeq\left\{\left(x_{0}, x_{1}\right) \in \mathrm{Cl}(E)^{2} \mid x_{0} \cup x_{1} \in \mathrm{Cl}(E)\right\}$

Cartesian product

- $\left|\&_{i \in I} E_{i}\right|=\bigcup_{i \in I}\{i\} \times\left|E_{i}\right|$
- $(i, a) \frown_{\& i \in I} E_{i}(j, b)$ if $i=j \Rightarrow a \frown_{E_{i}} b$.
- So that in particular $\mathrm{Cl}\left(\&_{i \in I} E_{i}\right) \simeq \prod_{i \in I} \mathrm{Cl}\left(E_{i}\right)$.

Fact

$|1 \& 1|=\{0,1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in\{0,1\}$, so that $\mathrm{Cl}(1 \& 1)=\mathcal{P}(\{0,1\})$.
$\left\langle\mathrm{Id}_{1}, 0\right\rangle=\{(*, 0)\}$ and $\left\langle 0, \mathrm{Id}_{1}\right\rangle=\{(*, 1)\}$ are trivially jointly epic.
$\mathrm{Cl}(\mathbf{S} E)=\mathrm{Cl}(1 \& 1 \multimap E) \simeq\left\{\left(x_{0}, x_{1}\right) \in \mathrm{Cl}(E)^{2} \mid x_{0} \cup x_{1} \in \mathrm{Cl}(E)\right\}$
$s_{0}, s_{1} \in \mathbf{S c o h}(E, F)$ are summable iff $s_{0} \cup s_{1} \in \mathbf{S c o h}(E, F)$ and then $s_{0}+s_{1}=s_{0} \cup s_{1}$.

Intermezzo: duality and booleans

Scoh is a model of classical LL: take $\left|E^{\perp}\right|=|E|$ and $a \frown_{E^{\perp}} b$ if $\neg\left(a \frown_{E} b\right)$. Then $E^{\perp \perp}=E$.

Intermezzo: duality and booleans

Scoh is a model of classical LL: take $\left|E^{\perp}\right|=|E|$ and $a \frown_{E^{\perp}} b$ if $\neg\left(a \frown_{E} b\right)$. Then $E^{\perp \perp}=E$.
So Scoh has coproducts, in particular $1 \oplus 1=\left(1^{\perp} \& 1^{\perp}\right)^{\perp}$

Intermezzo: duality and booleans

Scoh is a model of classical LL: take $\left|E^{\perp}\right|=|E|$ and $a \frown_{E^{\perp}} b$ if $\neg\left(a \frown_{E} b\right)$. Then $E^{\perp \perp}=E$.
So Scoh has coproducts, in particular $1 \oplus 1=\left(1^{\perp} \& 1^{\perp}\right)^{\perp}$ (notice that $1^{\perp} \neq 1$ contrarily to Girard's CS!).

Intermezzo: duality and booleans

Scoh is a model of classical LL: take $\left|E^{\perp}\right|=|E|$ and $a \frown_{E^{\perp}} b$ if $\neg\left(a \frown_{E} b\right)$. Then $E^{\perp \perp}=E$.
So Scoh has coproducts, in particular $1 \oplus 1=\left(1^{\perp} \& 1^{\perp}\right)^{\perp}$ (notice that $1^{\perp} \neq 1$ contrarily to Girard's CS!).
$\mathrm{Cl}(1 \oplus 1)=\{\emptyset,\{0\},\{1\}\}$ so $\{0\}$ and $\{1\}$ are not summable in $1 \oplus 1$ (though they are summable in $1 \& 1$): the category Scoh is not additive.

Intermezzo: duality and booleans

Scoh is a model of classical LL: take $\left|E^{\perp}\right|=|E|$ and $a \frown_{E^{\perp}} b$ if $\neg\left(a \frown_{E} b\right)$. Then $E^{\perp \perp}=E$.
So Scoh has coproducts, in particular $1 \oplus 1=\left(1^{\perp} \& 1^{\perp}\right)^{\perp}$ (notice that $1^{\perp} \neq 1$ contrarily to Girard's CS!).
$\mathrm{Cl}(1 \oplus 1)=\{\emptyset,\{0\},\{1\}\}$ so $\{0\}$ and $\{1\}$ are not summable in $1 \oplus 1$ (though they are summable in $1 \& 1$): the category Scoh is not additive.

Remark (SCS are not a stable model)
Contrarily to Girard's CS, SCS accept the parallel or program.

Comonoid structure of $1 \& 1$

Remember

- $|1|=\{*\}$ and $* \frown_{1} *$
- $|1 \& 1|=\{0,1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in\{0,1\}$, so that $\mathrm{Cl}(1 \& 1)=\mathcal{P}(\{0,1\})$.

Comonoid structure of $1 \& 1$

Remember

- $|1|=\{*\}$ and $* \frown_{1} *$
- $|1 \& 1|=\{0,1\}$ with $i \frown_{1 \& 1} j$ for all $i, j \in\{0,1\}$, so that $\mathrm{Cl}(1 \& 1)=\mathcal{P}(\{0,1\})$.

$1 \& 1$ as a comonoid

- counit: $\operatorname{pr}_{0}=\{(0, *) \in \operatorname{Scoh}(1 \& 1,1)\}$
- comultiplication: $\widetilde{L} \in \operatorname{Scoh}(1 \& 1,(1 \& 1) \otimes(1 \& 1))$ given by

$$
\widetilde{\mathrm{L}}=\{(0,(0,0))\} \cup\{(1,(0,1)),(1,(1,0))\}
$$

The cofree exponential: Scoh is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{\text {fin }}(|E|)$.

The cofree exponential: Scoh is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{\text {fin }}(|E|)$.
Instead we use finite multisets: $|!E|=\mathcal{M}_{\text {fin }}(|E|)$ and

$$
\left[a_{1}, \ldots, a_{n}\right] \frown!E\left[b_{1}, \ldots, b_{k}\right] \text { if } \forall i, j a_{i} \frown_{E} b_{j}
$$

The cofree exponential: Scoh is Lafont

Much simpler than the exponential of Lamarche who insisted on $|!E| \subseteq \mathcal{P}_{\text {fin }}(|E|)$.
Instead we use finite multisets: $|!E|=\mathcal{M}_{\mathrm{fin}}(|E|)$ and

$$
\left[a_{1}, \ldots, a_{n}\right] \frown_{!E}\left[b_{1}, \ldots, b_{k}\right] \quad \text { if } \quad \forall i, j a_{i} \frown_{E} b_{j}
$$

Then $\widetilde{\partial} \in \mathbf{S c o h}(1 \& 1,!(1 \& 1))$ is

$$
\widetilde{\partial}=\left\{\left(i,\left[i_{1}, \ldots, i_{k}\right]\right) \mid i, i_{1}, \ldots, i_{k} \in\{0,1\} \text { and } i=i_{1}+\cdots+i_{k}\right\}
$$

that is

- either $i=0$ and all the i_{j} 's are $=0$
- or $i=1$ and all the i_{j} 's $=0$ but one which $=1$.

Induced differentiation

Remember that $\mathbf{S} E=(1 \& 1 \multimap E)$.
So that $|\mathbf{S} E|=\{0,1\} \times|E|$ and $(i, a) \frown^{\prime}(j, b) \Leftrightarrow a \frown_{E} b$.

Induced differentiation

Remember that $\mathbf{S} E=(1 \& 1 \multimap E)$.
So that $|\mathbf{S} E|=\{0,1\} \times|E|$ and $(i, a) \frown \mathbf{S E}(j, b) \Leftrightarrow a \frown_{E} b$.
Given $t \in \mathbf{S c o h}(!E, F)$ we get $\mathbf{D} t \in \mathbf{S c o h}(!\mathbf{S} E, \mathbf{S} F)$.

Induced differentiation

Remember that $\mathbf{S} E=(1 \& 1 \multimap E)$.
So that $|\mathbf{S} E|=\{0,1\} \times|E|$ and $(i, a) \frown \mathbf{S E}(j, b) \Leftrightarrow a \frown E b$.
Given $t \in \mathbf{S c o h}(!E, F)$ we get $\mathbf{D} t \in \mathbf{S c o h}(!\mathbf{S} E, \mathbf{S} F)$. Remember that intuitively

$$
\mathbf{D} t(x, u)=\left(t(x), t^{\prime}(x) \cdot u\right)
$$

Induced differentiation

Remember that $\mathbf{S} E=(1 \& 1 \multimap E)$.
So that $|\mathbf{S} E|=\{0,1\} \times|E|$ and $(i, a) \frown \mathbf{S E}(j, b) \Leftrightarrow a \frown_{E} b$.
Given $t \in \mathbf{S c o h}(!E, F)$ we get $\mathbf{D} t \in \mathbf{S c o h}(!\mathbf{S} E, \mathbf{S} F)$. Remember that intuitively

$$
\mathbf{D} t(x, u)=\left(t(x), t^{\prime}(x) \cdot u\right)
$$

Fact

$\mathbf{D} t=\left\{\left(\left[\left(0, a_{1}, \ldots,\left(0, a_{n}\right)\right],(0, b)\right) \mid\left(\left[a_{1}, \ldots, a_{n}\right], b\right) \in t\right\}\right.$

Induced differentiation

Remember that $\mathbf{S} E=(1 \& 1 \multimap E)$.
So that $|\mathbf{S} E|=\{0,1\} \times|E|$ and $(i, a) \frown S E(j, b) \Leftrightarrow a \frown E b$.
Given $t \in \mathbf{S c o h}(!E, F)$ we get $\mathbf{D} t \in \mathbf{S c o h}(!\mathbf{S} E, \mathbf{S} F)$. Remember that intuitively

$$
\mathbf{D} t(x, u)=\left(t(x), t^{\prime}(x) \cdot u\right)
$$

Fact

$$
\begin{aligned}
\mathbf{D} t= & \left\{\left(\left[\left(0, a_{1}, \ldots,\left(0, a_{n}\right)\right],(0, b)\right) \mid\left(\left[a_{1}, \ldots, a_{n}\right], b\right) \in t\right\}\right. \\
& \cup\left\{\left(\left[\left(0, a_{1}, \ldots,\left(0, a_{n}\right),(1, a)\right],(1, b)\right) \mid\left(\left[a_{1}, \ldots, a_{n}, a\right], b\right) \in t\right\}\right.
\end{aligned}
$$

Conclusion

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).

Conclusion

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely "cartesian theory" of CD without references to LL.

Conclusion

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely "cartesian theory" of CD without references to LL.
- There is also a syntactic version of CD, a "CD PCF" which
- has a differentiation operation at all types
- as well as general recursion (fixpoint operators at all types)
- and features at the same time a fully deterministic operational semantics.

Conclusion

- We are developing the general theory of coherent differentiation with Aymeric Walch (PhD thesis).
- In particular, there is a purely "cartesian theory" of CD without references to LL.
- There is also a syntactic version of CD, a "CD PCF" which
- has a differentiation operation at all types
- as well as general recursion (fixpoint operators at all types)
- and features at the same time a fully deterministic operational semantics.

It was impossible to have all these features in the differential λ-calculus.

