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Introduction

In the previous episode

Let X be an ω-category and M : X op → Ab a local coe�cient system on
X . We have a canonical morphism

H∗(N(X ),M)︸ ︷︷ ︸
Homology of the nerve

−→ Hpol
∗ (X ,M)︸ ︷︷ ︸

Polygraphic homology

(1)

Intuition:

ω-categories ↔ spaces
Polygraphs ≃ CW-complexes

Polygraphic homology ≃ Cellular homology
Homology of the nerve ≃ Singular homology

By analogy, (1) should be an isomorphism. But it is not in general.
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The bubble

Counter-example :

Consider the �bubble�

B := •

α

We have

Hpol
k (B,Z) =

{
Z if k = 0, 2

0 otherwise

But N(B) has the homotopy type of a K (Z, 2), so

Hk(N(B),Z) =

{
Z if k is even,

0 otherwise.

2 / 19
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Digression

What goes wrong with the bubble ?

We have the tautological equality

α ∗ α = α ∗ α.

But the same equality also holds because of the Eckmann-Hilton argument

α ∗ α (EH)
= α ∗ α.

Even though the bubble is a polygraph, in a �resolution� this last equality
should only be an isomorphism.
Then, in the �resolution�, there should be a 4-dimensional cell

idα∗α ⇒4 (EH).

This cell generates non-trivial homology in dimension 4.
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Goal of this talk

Theorem (Maltsiniotis & G., 2023)

Let X be a 1-category and M : X op → Ab a local coe�cient system on X ,
then

H∗(N(X ),M) −→ Hpol
∗ (X ,M)

is an isomorphism.

For constant coe�cient and X monoid, this was proven by Lafont and
Métayer (2009).

Remark: The (polygraphic) homology of a 1-category need not be trivial
above dimension 1. This is because we have to take a polygraphic
resolution

P → X ,

but P is generally not a 1-category.
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Yet another de�nition of homology

Recall that a local coe�cient system on a 1-category X is a functor
M : X op → Ab that sends all morphisms of X to isomorphisms of Ab.

De�nition

Let X be a 1-category and M : X op → Ab a local coe�cient system on X .
We de�ne the (total) homology of X with coe�cient in M as the following
object of Der(Ab)

H∗(X ,M) := hocolim
x∈Xop

Mx ,

where M is seen as a functor X op → Comp(Ab) concentrated in degree 0
and hocolim is the left derived functor of the colimit.

Slogan : The homology is the derived colimit.
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Example:

Let G be a group and M : G op → Ab a right G -module. By de�nition

Hn(G ,M) = Tor
Z[G ]
n (M,Z),

where Z is seen as a trivial left G -module.

Observation : M ⊗Z[G ] Z ≃ colim
Gop

M

Hence, we recover

H∗(G ,M) = L colim
Gop

M =: hocolim
Gop

M
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Strategy

The strategy is to use third de�nition of homology to connect the
homology of the nerve with the polygraphic homology

H∗(N(X ),M) ≃ hocolim
x∈Xop

Mx ≃ Hpol
∗ (X ,M).

7 / 19
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Homology of the nerve as homotopy colimit

Proposition

Let X be a 1-category and M : X op → Ab a local coe�cient system on X .
We have

H∗(N(X ),M) ≃ hocolim
x∈X

Mx = H∗(X ,M).

Sketch of proof:

− Observation 1: (X , 1X ) is the colimit of

X op → Cat/X

x 7→ x\X ,

where x\X is equipped with the canonical projection x\X → X .

− Observation 2: the previous colimit is a homotopy colimit with respect
to Thomason weak equivalences (follows from Thomason's theorem
on homotopy colimits).
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Homology of the nerve as homotopy colimit

Sketch of proof (continued):

− Observation 3: the �functor� homology with local coe�cient

H∗(N(−),M|−) : Cat/X → Der(Ab),

preserves homotopy colimits with respect to Thomason equivalences.

(Where Der(Ab) is the (∞, 1)-category of chain complexes up to quasi-isomorphisms)

Hence, the formula

H∗(N(X ),M) ≃ hocolim
x∈Xop

H∗(N(x\X ),M|x\X ).
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Homology of the nerve as homotopy colimit

Sketch of proof (continued):

− Final observation: The (nerve of the) category x\X is contractible,
hence its homology is concentrated in degree 0 as

H∗(N(x\X ),M|x\X ) ≃ Mx ,

and we conclude

H∗(N(X ),M) ≃ hocolim
x∈Xop

H∗(N(x\X ),M|x\X ) ≃ hocolim
x∈Xop

Mx .
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Polygraphic homology as homotopy colimit

The goal now is to prove the following result.

Proposition

Let X be a 1-category and M : X op → Ab a local coe�cient system on X .
We have

Hpol
∗ (X ,M) ≃ hocolim

x∈Xop

Mx = H∗(X ,M).

From that and what seen previously, we will deduce the desired result:

Hpol
∗ (X ,M) ≃ H∗(N(X ),M).

11 / 19
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First step of the proof: the �unfolding� construction

Let X be a 1-category and p : P → X a polygraphic resolution. By
de�nition, we have

Hpol
∗ (X ,M) ≃ Hpol

∗ (P,M)

We de�ne a functor
X op → ωCat/X

x 7→ x\P,
(2)

where x\P is de�ned as the pullback

x\P P

x\X X .

x\p p
⌟

Observation: the colimit of (2) is (P, p : P → X ).
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The key result

Proposition (G., 2019)

Let X be a 1-category and p : P → X a polygraphic resolution. Then, the
diagram

X op → ωCat

x 7→ x\P

is co�brant for the projective folk model structure on Hom(X op, ωCat). In
particular, every x\P is a polygraph.

Proof: Not obvious.
Uses crucially the theory of discrete Conduché ω-functors and the fact that

x\P → P

is such an ω-functor for every x in X .
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The key result

Corollary

The colimit of
X op → ωCat/X

x 7→ x\P,

homotopy colimit (in the sense of the folk model structure).

Hence, we have

hocolim
x∈Xop

x\P ≃ colim
x∈Xop

x\P ≃ (P, p : P → X )

in Ho(ωCatfolk/X )
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A formula

Let X be a 1-category, M : X op → Ab a local coe�cient system on X and
p : P → X a polygraphic resolution of X .

Observation: The polygraphic homology �functor�

Hpol
∗ (−,M|−) : ωCat/X → Der(Ab)

preserves homotopy colimits with respect to the folk model structure.
Hence, we have the formula

Hpol
∗ (X ,M) ≃ Hpol

∗ (P,M|P) ≃ hocolim
x∈Xop

Hpol
∗ (x\P,M|x\P).

15 / 19
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The last piece of the puzzle

Lemma

For every object x of X , the polygraphic homology of x\P with coe�cient
in M|x\P is concentrated in degree 0 as:

Hpol
∗ (x\P,M|x\P) ≃ Mx .

textbfIdea of proof:

− The 1-category x\X can be contracted to its initial object, meaning
that

x\X x\X .

id

cst
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The last piece of the puzzle

Idea of proof(continued):

− Because the canonical morphism x\P → x\X is a folk trivial �bration
and x\P is co�brant, we can lift the previous contraction to x\P :

x\P x\P.
id

cst

where the 2-arrow is an oplax transformation.

− The polygraphic chain complex functor sends oplax transformation to
chain complexes homotopy. Hence, the polygraphic homology of x\P
is concentrated of degree 0 and its value is Mx .
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End of the proof of the main result

We can now �nally conclude:

Hpol
∗ (X ,M) ≃ hocolim

x∈Xop

Hpol
∗ (x\P,M|x\P)

≃ hocolim
x∈Xop

Mx

≃ H∗(N(X ),M).

Phew !
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Perspective

− Could we make sense of the formula

H∗(X ,M) = hocolim
x∈Xop

Mx

when X is an ω-category?

− Would we still have

H∗(N(X ),M) = hocolim
x∈Xop

Mx ?

− If we take weak polygraphic resolution, then would we have

Hpol
∗ (X ,M) ≃ H∗(N(X ),M) ?
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Merci François !
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