Polygraphic homology of categories with local coefficients

Léonard Guetta
(Joint work with Georges Maltsiniotis)

Max Planck Institute - Bonn

Journées François Métayer
IRIF, 09/06/2023
Table of Contents

1. Introduction
2. A slick definition of homology
3. Homology of the nerve
4. Polygraphic homology
In the previous episode

Let X be an ω-category and $M: X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have a canonical morphism

\[H_*(N(X), M) \quad \longrightarrow \quad H^\text{pol}_*(X, M) \]

Intuition:

ω-categories \leftrightarrow spaces

Polygraphs \simeq CW-complexes

Polygraphic homology \simeq Cellular homology

Homology of the nerve \simeq Singular homology

By analogy, (1) should be an isomorphism. But it is not in general.
In the previous episode

Let X be an ω-category and $M: X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have a canonical morphism

$$H_*(N(X), M) \longrightarrow H_{\text{pol}}^*(X, M)$$

(1)

Intuition:

ω-categories \leftrightarrow spaces

$\text{Polygraphs} \simeq \text{CW-complexes}$

$\text{Polygraphic homology} \simeq \text{Cellular homology}$

$H_*(N(X), M) \simeq \text{Singular homology}$

By analogy, (1) should be an isomorphism. But it is not in general.
In the previous episode

Let X be an ω-category and $M: X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have a canonical morphism

$$H_{\ast}(N(X), M) \quad \longrightarrow \quad H_{\ast}^{\text{pol}}(X, M)$$

(1)

Homology of the nerve \quad Polygraphic homology

Intuition:

ω-categories \leftrightarrow spaces
In the previous episode

Let \(X \) be an \(\omega \)-category and \(M: X^{\text{op}} \rightarrow \text{Ab} \) a local coefficient system on \(X \). We have a canonical morphism

\[
H_*(N(X), M) \quad \longrightarrow \quad H^\text{pol}_*(X, M)
\]

(1)

Intuition:

\(\omega \)-categories \(\leftrightarrow \) spaces

Polygraphs \(\simeq \) CW-complexes
In the previous episode

Let X be an ω-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have a canonical morphism

\[
\begin{align*}
H_*(N(X), M) & \longrightarrow H^\text{pol}_*(X, M) \\
\text{Homology of the nerve} & \quad \text{Polygraphic homology}
\end{align*}
\] (1)

Intuition:

ω-categories \leftrightarrow spaces

Polygraphs \simeq CW-complexes

Polygraphic homology \simeq Cellular homology
In the previous episode

Let X be an ω-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have a canonical morphism

$$H_*(N(X), M) \longrightarrow H_*^{\text{pol}}(X, M)$$

(1)

Intuition:

- ω-categories \leftrightarrow spaces
- Polygraphs \cong CW-complexes
- Polygraphic homology \cong Cellular homology
- Homology of the nerve \cong Singular homology
In the previous episode

Let X be an ω-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have a canonical morphism

$$H_*(N(X), M) \longrightarrow H_{\text{pol}}^*(X, M)$$

(1)

Intuition:

ω-categories \leftrightarrow spaces
Polygraphs \ni CW-complexes
Polygraphic homology \ni Cellular homology
Homology of the nerve \ni Singular homology

By analogy, (1) should be an isomorphism. But it is not in general.
The bubble

Counter-example:

\[B := \alpha \]

We have \[\text{Hol}(B, Z) = \begin{cases} Z & \text{if } k = 0, \\ 20 & \text{otherwise} \end{cases} \]

But \[\text{N}(B) \] has the homotopy type of a \[K(Z, 2) \], so \[\text{Hol}(\text{N}(B), Z) = \begin{cases} Z & \text{if } k \text{ is even}, \\ 0 & \text{otherwise}. \end{cases} \]
Counter-example: Consider the “bubble”

\[B := \bullet \]

\[\alpha \]

\[\overset{\text{H}_{\text{pol}}(B, Z)}{=} \begin{cases} Z & \text{if } k = 0, \\ 2Z & \text{otherwise} \end{cases} \]

\[\overset{\text{H}_{\text{k}}(N(B), Z)}{=} \begin{cases} Z & \text{if } k \text{ is even}, \\ 0 & \text{otherwise} \end{cases} \]
Counter-example: Consider the “bubble”

\[B := \begin{array}{c}
\alpha \\
\bullet
\end{array} \]

We have

\[H_k^{pol}(B, \mathbb{Z}) = \begin{cases}
\mathbb{Z} & \text{if } k = 0, 2 \\
0 & \text{otherwise}
\end{cases} \]
Counter-example: Consider the “bubble”\[B := \bullet\] We have\[H^\text{pol}_k(B, \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } k = 0, 2 \\ 0 & \text{otherwise} \end{cases}\] But \(N(B)\) has the homotopy type of a \(K(\mathbb{Z}, 2)\), so\[H_k(N(B), \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } k \text{ is even} \\ 0 & \text{otherwise} \end{cases}\]
Digression

What goes wrong with the bubble?
Digression

What goes wrong with the bubble?

We have the tautological equality

$$\alpha \star \alpha = \alpha \star \alpha.$$
What goes wrong with the bubble?

We have the tautological equality

\[\alpha \ast \alpha = \alpha \ast \alpha. \]

But the same equality also holds because of the Eckmann-Hilton argument

\[\alpha \ast \alpha \overset{(EH)}{=} \alpha \ast \alpha. \]
Digression

What goes wrong with the bubble?

We have the tautological equality

\[\alpha \ast \alpha = \alpha \ast \alpha. \]

But the same equality also holds because of the Eckmann-Hilton argument

\[\alpha \ast \alpha \overset{(EH)}{=} \alpha \ast \alpha. \]

Even though the bubble is a polygraph, in a “resolution” this last equality should only be an isomorphism.
Digression

What goes wrong with the bubble?

We have the tautological equality

\[\alpha \ast \alpha = \alpha \ast \alpha. \]

But the same equality also holds because of the Eckmann-Hilton argument

\[\alpha \ast \alpha = c_{\ast \alpha \ast \alpha} \quad \text{(EH)} \]

Even though the bubble is a polygraph, in a “resolution” this last equality should only be an isomorphism. Then, in the “resolution”, there should be a 4-dimensional cell

\[\text{id}_{\alpha \ast \alpha} \Rightarrow_4 \text{(EH)}. \]
Digression

What goes wrong with the bubble?

We have the tautological equality

\[\alpha \ast \alpha = \alpha \ast \alpha. \]

But the same equality also holds because of the Eckmann-Hilton argument

\[\alpha \ast \alpha \overset{(EH)}{=} \alpha \ast \alpha. \]

Even though the bubble is a polygraph, in a “resolution” this last equality should only be an isomorphism.

Then, in the “resolution”, there should be a 4-dimensional cell

\[\text{id}_{\alpha \ast \alpha} \Rightarrow_4 (EH). \]

This cell generates non-trivial homology in dimension 4.
Goal of this talk

Theorem (Maltsiniotis & G., 2023)

Let X be a 1-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X, then

$$H_* (N(X), M) \to H_*^{\text{pol}} (X, M)$$

is an isomorphism.

Remark: The (polygraphic) homology of a 1-category need not be trivial above dimension 1. This is because we have to take a polygraphic resolution $P \to X$, but P is generally not a 1-category.
Theorem (Maltsiniotis & G., 2023)

Let X be a 1-category and $M: X^{\text{op}} \to \text{Ab}$ a local coefficient system on X, then

$$H_*(N(X), M) \longrightarrow H^{\text{pol}}_*(X, M)$$

is an isomorphism.

For constant coefficient and X monoid, this was proven by Lafont and Métayer (2009).
Theorem (Maltsiniotis & G., 2023)

Let X be a 1-category and $M : X^{op} \to \text{Ab}$ a local coefficient system on X, then

$$H_*(N(X), M) \to H_{*}^{\text{pol}}(X, M)$$

is an isomorphism.

For constant coefficient and X monoid, this was proven by Lafont and Météayer (2009).

Remark: The (polygraphic) homology of a 1-category need not be trivial above dimension 1. This is because we have to take a polygraphic resolution

$$P \to X,$$

but P is generally not a 1-category.
Table of Contents

1. Introduction
2. A slick definition of homology
3. Homology of the nerve
4. Polygraphic homology
Yet another definition of homology

Recall that a local coefficient system on a 1-category X is a functor $M : X^{\text{op}} \to \text{Ab}$ that sends all morphisms of X to isomorphisms of Ab.

Recall that a local coefficient system on a 1-category X is a functor $M : X^{\text{op}} \to \text{Ab}$ that sends all morphisms of X to isomorphisms of Ab.

$$H_*^\text{loc}(X, M) := \text{ho colim}_{x \in X^{\text{op}}} M(x),$$

where M is seen as a functor $X^{\text{op}} \to \text{Comp}(\text{Ab})$ concentrated in degree 0 and ho colim is the left derived functor of the colimit.

Slogan: The homology is the derived colimit.
Yet another definition of homology

Recall that a local coefficient system on a 1-category X is a functor $M : X^{\text{op}} \to \text{Ab}$ that sends all morphisms of X to isomorphisms of Ab.

Definition

Let X be a 1-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We define the (total) homology of X with coefficient in M as the following object of $\text{Der}(\text{Ab})$

$$H_*(X, M) := \text{hocolim}_{x \in X^{\text{op}}} M_x,$$

where M is seen as a functor $X^{\text{op}} \to \text{Comp}(\text{Ab})$ concentrated in degree 0 and hocolim is the left derived functor of the colimit.
Yet another definition of homology

Recall that a local coefficient system on a 1-category X is a functor $M : X^{\text{op}} \to \text{Ab}$ that sends all morphisms of X to isomorphisms of Ab.

Definition

Let X be a 1-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We define the (total) homology of X with coefficient in M as the following object of $\text{Der}(\text{Ab})$

$$H_*(X, M) := \text{hocolim}_{x \in X^{\text{op}}} M_x,$$

where M is seen as a functor $X^{\text{op}} \to \text{Comp}(\text{Ab})$ concentrated in degree 0 and hocolim is the left derived functor of the colimit.

Slogan: The homology is the derived colimit.
Example:

Let G be a group and $M : G^{\text{op}} \rightarrow \text{Ab}$ a right G-module. By definition

$$H_n(G, M) = \text{Tor}_n^{\mathbb{Z}[G]}(M, \mathbb{Z}),$$

where \mathbb{Z} is seen as a trivial left G-module.
Example:

Let G be a group and $M : G^{\text{op}} \to \text{Ab}$ a right G-module. By definition

$$H_n(G, M) = \text{Tor}^{\mathbb{Z}[G]}_n(M, \mathbb{Z}),$$

where \mathbb{Z} is seen as a trivial left G-module.

Observation: $M \otimes_{\mathbb{Z}[G]} \mathbb{Z} \simeq \text{colim}_{G^{\text{op}}} M$
Example:

Let G be a group and $M : G^{\text{op}} \to \text{Ab}$ a right G-module. By definition

$$H_n(G, M) = \text{Tor}_n^{\mathbb{Z}[G]}(M, \mathbb{Z}),$$

where \mathbb{Z} is seen as a trivial left G-module.

Observation: $M \otimes_{\mathbb{Z}[G]} \mathbb{Z} \simeq \colim_{G^{\text{op}}} M$

Hence, we recover

$$H_*(G, M) = \mathbb{L} \colim_{G^{\text{op}}} M =: \text{hocolim}_{G^{\text{op}}} M$$
The strategy is to use third definition of homology to connect the homology of the nerve with the polygraphic homology

\[H_\ast(N(X), M) \simeq \text{hocolim} \ M_x \simeq H_\ast^{\text{pol}}(X, M). \]
Table of Contents

1 Introduction

2 A slick definition of homology

3 Homology of the nerve

4 Polygraphic homology
Homology of the nerve as homotopy colimit

Proposition

Let X be a 1-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have

$$H_*(N(X), M) \cong \text{hocolim}_{x \in X} M_x = H_*(X, M).$$
Homology of the nerve as homotopy colimit

Proposition

Let X be a 1-category and $M: X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have

$$H_*(N(X), M) \simeq \text{hocolim}_{x \in X} M_x = H_*(X, M).$$

Sketch of proof:

- Observation 1: $(X, 1_X)$ is the colimit of

$$X^{\text{op}} \to \text{Cat}/X$$

$$x \mapsto x \backslash X,$$

where $x \backslash X$ is equipped with the canonical projection $x \backslash X \to X$.

- Observation 2: the previous colimit is a homotopy colimit with respect to Thomason weak equivalences (follows from Thomason's theorem on homotopy colimits).
Homology of the nerve as homotopy colimit

Proposition

Let X be a 1-category and $M: X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have

$$H_*(N(X), M) \simeq \text{hocolim}_{x \in X} M_x = H_*(X, M).$$

Sketch of proof:

- Observation 1: $(X, 1_X)$ is the colimit of

$$X^{\text{op}} \to \text{Cat}/X$$

$$x \mapsto x \backslash X,$$

where $x \backslash X$ is equipped with the canonical projection $x \backslash X \to X$.

- Observation 2: the previous colimit is a homotopy colimit with respect to Thomason weak equivalences (follows from Thomason’s theorem on homotopy colimits).
Homology of the nerve as homotopy colimit

Sketch of proof (continued):

- Observation 3: the “functor” homology with local coefficient

\[H_\ast(N(\cdot), M|_{\cdot}) : \text{Cat}/X \to \text{Der}(\text{Ab}), \]

preserves homotopy colimits with respect to Thomason equivalences.
Homology of the nerve as homotopy colimit

Sketch of proof (continued):

- **Observation 3:** the "functor" homology with local coefficient

\[H_*(N(-), M|_-) : \text{Cat}/X \to \text{Der}(\text{Ab}), \]

preserves homotopy colimits with respect to Thomason equivalences.
Sketch of proof (continued):

- Observation 3: the “functor” homology with local coefficient

\[H_*(N(-), M|_-) : \text{Cat}/X \to \text{Der}(\text{Ab}), \]

preserves homotopy colimits with respect to Thomason equivalences.

(Where \(\text{Der}(\text{Ab}) \) is the \((\infty, 1)\)-category of chain complexes up to quasi-isomorphisms)
Sketch of proof (continued):

- Observation 3: the “functor” homology with local coefficient

\[H_\ast (N(-), M|_\cdot) : \text{Cat}/X \to \text{Der}(\text{Ab}), \]

preserves homotopy colimits with respect to Thomason equivalences.

(Where \(\text{Der}(\text{Ab}) \) is the \((\infty, 1)\)-category of chain complexes up to quasi-isomorphisms)
Sketch of proof (continued):

- Observation 3: the “functor” homology with local coefficient

\[H_*(N(-), M|-): \text{Cat}/X \to \text{Der}(\text{Ab}), \]

preserves homotopy colimits with respect to Thomason equivalences.

(Where \(\text{Der}(\text{Ab}) \) is the \((\infty, 1)\)-category of chain complexes up to quasi-isomorphisms)
Homology of the nerve as homotopy colimit

Sketch of proof (continued):

- Observation 3: the “functor” homology with local coefficient

\[H_\ast(N(_), M\mid_{_}) : \text{Cat}/X \to \text{Der}(\text{Ab}), \]

preserves homotopy colimits with respect to Thomason equivalences.

(Where \(\text{Der}(\text{Ab}) \) is the \((\infty, 1)\)-category of chain complexes up to quasi-isomorphisms)

Hence, the formula

\[H_\ast(N(X), M) \simeq \text{hocolim}_{x \in X^{op}} H_\ast(N(x\setminus X), M\mid_{x\setminus X}). \]
Sketch of proof (continued):

- Final observation: The (nerve of the) category $x \setminus X$ is contractible, hence its homology is concentrated in degree 0 as

$$H_\ast(N(x \setminus X), M_{|x \setminus X}) \simeq M_x,$$
Sketch of proof (continued):

- Final observation: The (nerve of the) category $x \backslash X$ is contractible, hence its homology is concentrated in degree 0 as

$$H_*(N(x \backslash X), M|_{x \backslash X}) \simeq M_x,$$

and we conclude

$$H_*(N(X), M) \simeq \text{hocolim}_{x \in X^{op}} H_*(N(x \backslash X), M|_{x \backslash X}) \simeq \text{hocolim}_{x \in X^{op}} M_x.$$
Table of Contents

1. Introduction
2. A slick definition of homology
3. Homology of the nerve
4. Polygraphic homology
The goal now is to prove the following result.

Proposition

Let X be a 1-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have

$$H^\text{pol}_*(X, M) \simeq \text{hocolim}_{x \in X^{\text{op}}} M_x = H_*(X, M).$$
The goal now is to prove the following result.

Proposition

Let X be a 1-category and $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X. We have

$$H^\text{pol}_*(X, M) \simeq \text{hocolim}_{x \in X^{\text{op}}} M_x = H_*(X, M).$$

From that and what seen previously, we will deduce the desired result:

$$H^\text{pol}_*(X, M) \simeq H_*(N(X), M).$$
First step of the proof: the “unfolding” construction

Let X be a 1-category and $p: P \to X$ a polygraphic resolution. By definition, we have

$$H_{\ast}^{\text{pol}}(X, M) \simeq H_{\ast}^{\text{pol}}(P, M)$$
First step of the proof: the “unfolding” construction

Let X be a 1-category and $p: P \to X$ a polygraphic resolution. By definition, we have

$$H_{\ast}^{\text{pol}}(X, M) \simeq H_{\ast}^{\text{pol}}(P, M)$$

We define a functor

$$X^{\text{op}} \to \omega\text{Cat}/X$$

$$x \mapsto x \setminus P,$$

where $x \setminus P$ is defined as the pullback

$$\begin{array}{ccc}
 x \setminus P & \rightarrow & P \\
 x \setminus P & \downarrow & \downarrow p \\
 x \setminus X & \rightarrow & X.
\end{array}$$
First step of the proof: the “unfolding” construction

Let X be a 1-category and $p: P \rightarrow X$ a polygraphic resolution. By definition, we have

\[H^\text{pol}_*(X, M) \simeq H^\text{pol}_*(P, M) \]

We define a functor

\[X^{\text{op}} \rightarrow \omega \text{Cat}/X \]

\[x \mapsto x \backslash P, \]

where $x \backslash P$ is defined as the pullback

\[\begin{array}{ccc}
 x \backslash P & \rightarrow & P \\
 \downarrow & & \downarrow p \\
 x \backslash X & \rightarrow & X.
\end{array} \]

Observation: the colimit of (2) is $(P, p: P \rightarrow X)$.
Proposition (G., 2019)

Let X be a 1-category and $p: P \to X$ a polygraphic resolution. Then, the diagram

$$
\begin{align*}
X^{\text{op}} & \to \omega \text{Cat} \\
\downarrow & \\
\omega \text{Cat} & \to \\
\end{align*}
$$

$x \mapsto x|P$

is cofibrant for the projective folk model structure on $\text{Hom}(X^{\text{op}}, \omega \text{Cat})$. In particular, every $x|P$ is a polygraph.
The key result

Proposition (G., 2019)

Let X be a 1-category and $p: P \rightarrow X$ a polygraphic resolution. Then, the diagram

$$
X^{\text{op}} \rightarrow \omega\text{Cat}
$$

$$
x \mapsto x \backslash P
$$

is cofibrant for the projective folk model structure on $\text{Hom}(X^{\text{op}}, \omega\text{Cat})$. In particular, every $x \backslash P$ is a polygraph.

Proof: Not obvious.
The key result

Proposition (G., 2019)

Let X be a 1-category and $p: P \rightarrow X$ a polygraphic resolution. Then, the diagram

$$X^{\text{op}} \rightarrow \omega\text{Cat}$$

$$x \mapsto x\backslash P$$

is cofibrant for the projective folk model structure on $\text{Hom}(X^{\text{op}}, \omega\text{Cat})$. In particular, every $x\backslash P$ is a polygraph.

Proof: Not obvious. Uses crucially the theory of discrete Conduché ω-functors and the fact that

$$x\backslash P \rightarrow P$$

is such an ω-functor for every x in X.
The key result

Corollary

The colimit of

\[X^{\text{op}} \to \omega \text{Cat}/X \]
\[x \mapsto x \setminus P, \]

homotopy colimit (in the sense of the folk model structure).
The key result

Corollary

The colimit of

\[X^{\text{op}} \to \omega\text{Cat}/X \]

\[x \mapsto x\backslash P, \]

homotopy colimit (in the sense of the folk model structure).

Hence, we have

\[\text{hocolim}_{x \in X^{\text{op}}} x\backslash P \simeq \text{colim}_{x \in X^{\text{op}}} x\backslash P \simeq (P, p: P \to X) \]

in \(\mathcal{H}_0(\omega\text{Cat}^{\text{folk}}/X) \)
Let X be a 1-category, $M: X^{\text{op}} \rightarrow \text{Ab}$ a local coefficient system on X and $p: P \rightarrow X$ a polygraphic resolution of X.

Observation: The polygraphic homology functor $H_{\text{pol}}^\ast(\cdot, M|\cdot): \omega\text{Cat}/X \rightarrow \text{Der}(\text{Ab})$ preserves homotopy colimits with respect to the folk model structure. Hence, we have the formula:

$$H_{\text{pol}}^\ast(X, M) \cong H_{\text{pol}}^\ast(P, M|P) \cong \text{hocolim}_{x \in X^{\text{op}}} H_{\text{pol}}^\ast(x|P, M|x|P).$$
Let X be a 1-category, $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X and $p : P \to X$ a polygraphic resolution of X.

Observation: The polygraphic homology “functor”

$$H^\text{pol}_* (_ , M|_{_}) : \omega \text{Cat}/X \to \text{Der}(\text{Ab})$$

preserves homotopy colimits with respect to the folk model structure.
Let X be a 1-category, $M : X^{\text{op}} \to \text{Ab}$ a local coefficient system on X and $p : P \to X$ a polygraphic resolution of X.

Observation: The polygraphic homology “functor”

\[
H^\text{pol}_*(-, M|_-) : \omega\text{Cat}/X \to \text{Der}((\text{Ab})
\]

preserves homotopy colimits with respect to the folk model structure. Hence, we have the formula

\[
H^\text{pol}_*(X, M) \simeq H^\text{pol}_*(P, M|_P) \simeq \underset{x \in X^{\text{op}}}{\text{hocolim}} H^\text{pol}_*(x \setminus P, M|_{x \setminus P}).
\]
Lemma

For every object x of X, the polygraphic homology of $x \setminus P$ with coefficient in $M|_{x \setminus P}$ is concentrated in degree 0 as:

$$H^\text{pol}_\ast(x \setminus P, M|_{x \setminus P}) \simeq M_x.$$
The last piece of the puzzle

Lemma

For every object x of X, the polygraphic homology of $x \setminus P$ with coefficient in $M|_{x \setminus P}$ is concentrated in degree 0 as:

$$H_*^{\text{pol}}(x \setminus P, M|_{x \setminus P}) \simeq M_x.$$

Idea of proof:

- The 1-category $x \setminus X$ can be contracted to its initial object, meaning that

$$x \setminus X \xrightarrow{\text{id}} x \setminus X \xrightarrow{\text{cst}} x \setminus X.$$
The last piece of the puzzle

Idea of proof (continued):

− Because the canonical morphism $x\backslash P \to x\backslash X$ is a folk trivial fibration and $x\backslash P$ is cofibrant, we can lift the previous contraction to $x\backslash P$:

$$
\begin{tikzcd}
x\backslash P & x\backslash P \\
\downarrow & \downarrow \\
x\backslash P & x\backslash P.
\end{tikzcd}
$$

where the 2-arrow is an oplax transformation.

− The polygraphic chain complex functor sends oplax transformation to chain complexes homotopy. Hence, the polygraphic homology of $x\backslash P$ is concentrated of degree 0 and its value is M_x. □
We can now finally conclude:

\[H^\text{pol}_*(X, M) \cong \text{hocolim}_{x \in X^\text{op}} H^\text{pol}_*(x \setminus P, M|_{x \setminus P}) \]

\[\cong \text{hocolim}_{x \in X^\text{op}} M_x \]

\[\cong H_*(N(X), M). \]

Phew!
Perspective

− Could we make sense of the formula $H^\ast(X, M) = \operatorname{holim}_{x \in X} M_x$ when X is an ω-category?

− Would we still have $H^\ast(N(X), M) = \operatorname{holim}_{x \in X} M_x$?

− If we take weak polygraphic resolution, then would we have $H_{\text{pol}}^\ast(X, M) \simeq H^\ast(N(X), M)$?
Could we make sense of the formula

$$H_\ast(X, M) = \text{hocolim}_{x \in X^{\text{op}}} M_x$$

when X is an ω-category?
Could we make sense of the formula

\[H_*(X, M) = \underset{x \in X^{op}}{\text{hocolim}} M_x \]

when \(X \) is an \(\omega \)-category?

Would we still have

\[H_*(N(X), M) = \underset{x \in X^{op}}{\text{hocolim}} M_x \]
Could we make sense of the formula
\[H_*(X, M) = \operatorname{hocolim}_{x \in X^{\text{op}}} M_x \]
when \(X \) is an \(\omega \)-category?

Would we still have
\[H_*(N(X), M) = \operatorname{hocolim}_{x \in X^{\text{op}}} M_x \]?

If we take weak polygraphic resolution, then would we have
\[H^\text{pol}_*(X, M) \simeq H_*(N(X), M) \]?
Merci François !