
A parametricity-based construction of semi-simplicial and semi-cubical sets

Hugo Herbelin

joint work with Ramkumar Ramachandra

LHC 2023

1

Outline

- Iterating unary or binary parametricity respectively build augmented semi-simplicial
and semi-cubical sets

- “Fibred” vs “indexed” presheaves over a direct category (and a word on “Reedy
fibrancy”)

- An effective iterated-parametricity-based “indexed” construction (formalised in Coq)

- Discussion and conclusions

2

From unary and binary parametricity
to

augmented semi-simplicial and semi-cubical sets

3

Unary and binary parametricity

For a given typed language, parametricity associates to each type an observational
characterisation of the behaviour of its inhabitants. E.g.:

Binary parametricity (a form of bisimilarity)

To X : HSet, associate X⋆ : X ×X → HSet

Example: f0 =X→Y f1 ≜ Πx0x1 ∈ X. (x0 =X x1 → f0 x0 =Y f1 x1)

Example: X0 =HSet X1 ≜ X0 ×X1 → HSet

Unary parametricity (a form of realisability)

To X : HSet, associate X⋆ : X → HSet

Example : f ∈ (X → Y)⋆ ≜ Πx ∈ X. f x ∈ Y

Example : X ∈ HSet⋆ ≜ X → HSet

(where, in type theory, which by default is (∞, 1)-categorical, HSet is the subtype of
“discrete” Type, i.e. with proof-irrelevant equality)

4

Parametricity can be iterated

binary case unary case

X : HSet X : HSet
X⋆ : X ×X → HSet X⋆ : X → HSet

X⋆⋆ :

x : X

p:X⋆(x,y)

r:X⋆(x,z) z : X

q:X⋆(z,w)

y : X
s:X⋆(y,w) w : X

→ HSet X⋆⋆ : Πo : X.(X⋆(o)×X⋆(o))→ HSet

. . . X⋆⋆⋆ : Πo : X. a : X⋆(o)

p:X⋆⋆(o,x,y) q:X⋆⋆(o,x,z)

y : X⋆(o)
r:X⋆⋆(o,y,z) z : X⋆(o)

→ HSet

. . .

This eventually gives rise to a semi-cubical set structure (binary case) or augmented semi-
simplicial set structure (unary case, as reported to us by Altenkirch and Moeneclaey).

5

The common presentation of
augmented semi-simplicial and semi-cubical sets

For ν a positive integer, we define the ν-semi-shape category to be:

Obj ≜ N
Hom(p, n) ≜ {l ∈ ([0, ν) ∪ {⋆})n | number of ⋆ in l = p}

g ◦ f ≜

 f if g = []
w :: (g′ ◦ f) if g = (w :: g′), where w ∈ [0, ν)
a :: (g′ ◦ f ′) if g = (⋆ :: g′), f = (a :: f ′), where a ∈ [0, ν) ∪ {⋆}

id ≜ [⋆, . . . , ⋆] n times for id ∈ Hom(n, n)

It defines either the augmented semi-simplicial category (ν = 1) or the semi-cubical
category (ν = 2)

00⋆

⋆00 0⋆0

0⋆⋆

⋆⋆0

⋆0⋆
⋆⋆⋆

01 11

00 10

⋆1

0⋆ 1⋆

⋆0

⋆⋆

(standard augmented 3-semi-simplex) (standard 2-semi-cube)

6

Fibred vs indexed representation of dependencies

7

Two standard ways to represent a dependent type over a type B

• the dependent “indexed” way (as a family):

P : B → Type

• the fibred way (as in “fibrational” categorical models):

(A, f) : ΣA : Type. (A→ B)

A fundamental equivalence

B → Type ≃ ΣA : Type. (A→ B)

P 7→ (

total space of P︷ ︸︸ ︷
Σb : B.P b, π1)

λb : B. Σa : A. (fa = b)︸ ︷︷ ︸
fibre of b

←[(A, f)

Proof relies on univalence (or even without if ≃ is defined in an enough extensional way)

Composing those is not definitional/strict! The true (suspected) cause of Curien-Garner-
Hofmann’s mismatch between MLTT and LCCC!

8

Fibred vs indexed parametricity

Consequently, two (conjecturally) equivalent characterisations of the assignment to a type
of an iterated family of (relevant) predicates/relations over this type:

iterated fibred iterated indexed

... ...
X⋆⋆ : HSet X⋆⋆ : Πxy : X,X⋆(x, y)→

Πzw : X.X⋆(z, w)→
X⋆(x, z)×X⋆(y, w)→ HSet

↓↓↓↓
X⋆ : HSet X⋆ : X ×X → HSet
↓↓

X : HSet X : HSet

+ coherence conditions

For connections between the two approaches, see e.g. Atkey-Johann-Ghani 2014, Bernardy-
Coquand-Moulin 2014, Altenkirch-Kaposi 2015, Tabareau-Tanter-Sozeau 2018, Johann-
Sojokova 2017, ...

9

Correspondingly: Fibred vs indexed representation of augmented
semi-simplicial and cubical sets

- Any presheaf over a direct categorical (i.e. with “well-founded face maps”) can (a priori)
be represented in the indexed way (by induction).

- The indexed and fibred representations do not have the same properties!

• Instantiating an indexed representation requires giving only the sets, not the maps.

• Conversely, indexed presheaves are more difficult to define: the coherence conditions
are hard-wired in the definition and proved (once for all) at definition time.

• As models of cubical type theory (which is one of the motivations), indexed presheaves
satisfy definitional rules which fibred presheaves (a priori) do not.

In categorical terms, an indexed presheaf is indexed over the “matching object” (i.e. the
collection of all faces of lower dimensions).

The image of indexed presheaves within fibred presheaves through the equivalence is called
“Reedy fibrant”.

Any indexed definition requires a specific choice of definition of a “matching object”. This
talk reports about a presentation based on parametricity.

10

Effective construction of augmented semi-simplicial or cubical sets

11

Iterated meta-induction vs direct construction

Conceptually, iterated parametricity is obtained by iterating the parametricity translation
starting from some X : HSet.

X : HSet
X⋆ : HSet⋆(X)(X) (≡ X×X → HSet)
X⋆⋆ : (HSet⋆(X)(X))⋆(X⋆)(X⋆) (applying parametricity rules for ×, → and HSet)
. . .

This is a (meta-)induction on the syntax of types!

How to turn it into a regular induction on the dimension?

12

Analysing the recursive structure of types at dimension n

13

A full formalisation

Require to simultaneously define the matching objects, restrictions between them, and
coherences on composition of restrictions (no higher-order coherences because in HSet)

Fully formalised in Coq (sources at github.com/artagnon/bonak)

14

Comparison with other formalisations

- H.’s indexed semi-simplicial types 2013: based on face maps, complex combinatorics.

- Part-Luo’s semi-simplicial types in logically-enriched type theory 2015: based on injective
growing functions.

- Annenkov-Capriotti-Kraus’ semi-simplicial types in two-level type theory 2017: based on
injective growing functions which compose definitionally, thus cutting down the combina-
torics.

- Chen-Kraus’ semi-simplicial types in CwF 2021.

- This talk, parametricity-based: use Coq’s strict propositions and “Yoneda trick” on
inequalities to get more definitional equalities, complex induction.

Other related formalisations: Sozeau-Tabareau’s groupoid model 2013, Tabareau-Tanter-
Sozeau’s 2-groupoid model 2013, Altenkirch-Boulier-Kaposi-Tabareau’s setoid model 2019,
Allioux-Finster-Sozeau’s opetopic types 2021, ...

15

Conclusions and open questions

• A rather complex construction but the benefits of an indexed definition:

– Provide models which interpret dependent types as dependent types, providing
more definitional equalities (up to some limits, ongoing work of Sarah Reboullet).
See also: Altenkirch-Kaposi 2014, Altenkirch-Kaposi-Shulman 2022.

• Suggest to further study fibred vs indexed presheaves.

• Suggest to rearticulate the traditional opposition between syntax and semantics around
factual technical differences rather than cultural differences:

– indexed is not specific to syntax and fibered to semantics,
– any algebra can be presented as a free algebra,
– intrinsic (without proof-terms) vs extrinsic (with proof-terms),
– with specific choices of (co)limits vs up to isomorphism.

• Can the experience on turning meta-induction into regular induction be used to build
semi-simplicial types (without HSet restriction, ongoing work of Moana Jubert, using
Ara-Burroni-Guiraud-Malbos-Métayer-Mimram’s tensoring with O1)?

16

Technical issues I

Strongly dependent construction where:

• level n requires defining a notion of border at level n− 1,

• which depends on defining a notion of border restriction map from level n− 1,

• which depends on a coherence condition between restrictions from levels n − 1 and
n− 2.

We did not succeed to get full well-founded induction (untractable dependencies):

• instead, we worked on blocks of three levels n− 2, n− 1, n at once, that we stepwise
slid.

17

Technical issues II

Strongly dependent construction, proofs of p ≤ q occur in statements with antagonistic
requirements:

• ability to do case analysis on inequality proofs,

• convenience of definitional proof irrelevance on inequality proofs.

For that purpose, we switch between two representations shown equivalent:

• a definitionally proof-relevant inductive formulation in Type,

• a definitionally proof-irrelevant definition obtained by a Yoneda construction (i.e.
n ≤Y p ≜ Πq. q ≤ n → q ≤ p) on top of a recursive definition of inequality in
strict Prop.

18

An algebra of inequality proofs

In particular, we use three instances of the following algebra of inequality proofs:

contra : 0 = n + 1 → False
init : 0 ≤ n
⋄ : n ≤ n
↕ : n ≤ m ∧m ≤ p → n ≤ p
↑ : n ≤ m → n ≤ m + 1
↓ : n + 1 ≤ m → n ≤ m
⇓ : n + 1 ≤ m + 1 → n ≤ m
⇑ : n ≤ m → n + 1 ≤ m + 1

Incidentally suggests to canonically infer inequality proofs using type classes (but not
attempted).

19

