The Cyclic Category Revisited

André Joyal and Amit Sharma

Colloque en I'honneur de François Metayer (Paris, 8/06/2023)

Joyeux anniversaire François!

Je voudrais te remercier pour tes belles contributions aux catégories supérieures et à l'informatique théorique!

Je souligne particulièrement ta contribution à l'incroyable structure folk sur ω-Cat!

Le séminaire Métayer joue un rôle important dans la diffusion et la communication des travaux de toute une communauté de chercheurs.

Merci encore!

The cyclic category Λ has 40 years!

- A. Connes: Cohomology cyclique et foncteurs Ext ${ }^{n}$. (1983).
- W.G. Dwyer, M. J. Hopkins and D.M. Kan: The homotopy theory of cyclic sets. (1985).
- A. Connes and C. Consani: Cyclic structures on the topos of cyclic sets. (2013).
- O. Caramello and N. Wentzlaff: Cyclic theories. (2014).
- T. Nikolaus and P. Scholze: On topological Cyclic Homology. (2018).
- D. Kaledin: Trace theories, Böksted periodicity and Bott periodicity. (2021).
- K. Hess and N. Rasekh: Shadows and bicategorical traces. (2023).

Eckmann-Hilton

Theorem

(Eckmann-Hilton) Let $\mathcal{M}=(\mathcal{M}, \otimes, I)$ be a monoidal category. The monoid of endomorphisms of the unit object $I \in \mathcal{M}$ is commutative and we have $f \circ g=f \otimes g$ for every $f, g \in \operatorname{End}(I)$.

For example, the category $[\mathbb{C}, \mathbb{C}]$ of endo-functors of a category \mathbb{C} is monoidal if we put $F \otimes G=F \circ G$ for $F, G: \mathbb{C} \rightarrow \mathbb{C}$. The unit object $I \in[\mathbb{C}, \mathbb{C}]$ is the identity functor $1_{\mathbb{C}}: \mathbb{C} \rightarrow \mathbb{C}$.

An element $\alpha \in \operatorname{End}\left(1_{\mathbb{C}}\right)$ is a natural transformation $\alpha: 1_{\mathbb{C}} \rightarrow 1_{\mathbb{C}}$. By naturality, the following square commutes for every map $f: A \rightarrow B$ in \mathbb{C}.

Hence we have $f \alpha_{A}=\alpha_{B} f$ for every map $f: A \rightarrow B$.

$B M$-categories

If M is a monoid, we shall denote by $B M$ the category with a single object \star and with $\operatorname{Hom}(\star, \star)=M$.
The category $B M$ is symmetric monoidal when M is commutative. We have $f \otimes g=f \circ g$ for every $f, g \in M$.

Definition
A $B M$-category is a category \mathbb{C} equipped with an action

$$
\alpha: B M \times \mathbb{C} \rightarrow \mathbb{C}
$$

of the monoidal category $B M$.
An action $\alpha: B M \times \mathbb{C} \rightarrow \mathbb{C}$ is equivalent to a morphism of monoids

$$
\alpha: M \rightarrow \operatorname{End}\left(1_{\mathbb{C}}\right)
$$

$B M$-categories

Remarks:

- the category of M-sets $\operatorname{Set}^{M}=[B M, \operatorname{Set}]$ is symmetric monoidal closed, with the tensor product given by the Day convolution product;
- A $B M$-category is the same thing as a category \mathbb{C} enriched over the symmetric monoidal category Set ${ }^{M}$.

The tensor product $X \otimes_{M} Y$ of two M-sets X and Y is the coequaliser of the maps

$$
d_{0}, d_{1}: X \times M \times Y \rightarrow X \times Y
$$

defined by $d_{0}(x, m, y)=(m \cdot x, y)$ and $d_{1}(x, m, y)=(x, m \cdot y)$.
The action of M on $X \otimes_{M} Y$ is defined by putting $m \cdot(x \otimes y)=(m \cdot x) \otimes y=x \otimes(m \cdot y)$.

The category $B \mathbb{N}$

The additive monoid of natural numbers $\mathbb{N}=(\mathbb{N},+, 0)$ is freely generated by $1 \in \mathbb{N}$.

A $B \mathbb{N}$-category is a category \mathbb{C} equipped with a homomorphism

$$
\alpha: \mathbb{N} \rightarrow \operatorname{End}\left(1_{\mathbb{C}}\right)
$$

Equivalently, $B \mathbb{N}$-category is a category \mathbb{C} equipped with a natural transformation $\rho=\alpha(1): 1_{\mathbb{C}} \rightarrow 1_{\mathbb{C}}$.
We shall say that the endomorphism $\rho_{A}: A \rightarrow A$ is the structural loop of the object $A \in \mathbb{C}$.

The naturality of ρ means that we have $f \rho_{A}=\rho_{B} f$ for every map $f: A \rightarrow B$ in \mathbb{C}.

A functor $F: \mathbb{A} \rightarrow \mathbb{B}$ between $B \mathbb{N}$-categories is equivariant if $F\left(\rho_{A}\right)=\rho_{\text {FA }}$ for every object $A \in \mathcal{A}$.

The category Δ

Recall that the simplicial category Δ has for objects the non-empty finite ordered sets $[n]=\{0,1, \ldots, n\}$ for $n \geq 0$ and for morphisms the order preserving maps.

The category of posets is a full subcategory of the category of (small) categories and we have $\Delta \subset$ Poset \subset Cat .
The category $[n]$ is freely generated by a chain of n-arrows

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n-1 \rightarrow n
$$

We shall denote by $[n]^{+}$the category freely generated by a circuit of $n+1$-arrows

$$
0 \stackrel{e(0)}{\gtrless} 1 \xrightarrow{e(1)} 2 \xrightarrow{e(n)} \cdots(n-1) \xrightarrow{e(n-1)} n
$$

We have $e(i): i \rightarrow(i+1)$ for every $i \in \mathbb{Z} /(n+1)$.

The category $[n]^{+}$

$$
0 \stackrel{e(0)}{\longrightarrow} 1 \xrightarrow{e(1)} 2 \xrightarrow{e(n)} \xrightarrow{e(2)} \cdots \xrightarrow{\longrightarrow}(n-1) \xrightarrow{e(n-1)} n
$$

The monoid of endomorphisms $\operatorname{End}(i)=\operatorname{Hom}(i, i)$ of the object $i \in[n]^{+}$is freely generated by the loop

$$
\rho(i):=e(i+n) \cdots e(i+1) e(i)
$$

We have $f \rho(i)=\rho(j) f$ for every morphism $f: i \rightarrow j$ in $[n]^{+}$.
Hence the category $[n]^{+}$has a $B \mathbb{N}$-structure defined by the loops $\rho(i): i \rightarrow i$ for every $i \in[n]^{+}$.
Notice that $[0]^{+}=B \mathbb{N}$.

The category Λ

Definition

We shall say that a functor $f:[m]^{+} \rightarrow[n]^{+}$has degree $q \geq 0$ if $f\left(\rho_{i}\right)=\left(\rho_{f(i)}\right)^{q}$ for every $i \in[m]$.

Remarks

- If $f\left(\rho_{i}\right)=\left(\rho_{f(i)}\right)^{q}$ for some $i \in[m]$, then f has degree q.
- A functor $f:[m]^{+} \rightarrow[n]^{+}$is a $B \mathbb{N}$-functor if and only it is of degree 1.

Definition

The epicyclic category $\tilde{\Lambda}$ is the subcategory of Cat spanned by the categories $[n]^{+}$and the functors of degree >0.

Definition

The cyclic category Λ is the subcategory of Cat spanned by the categories $[n]^{+}$and the functor of degree 1 .

The cyclic category Λ is a full subcategory of the category of $B \mathbb{N}$-categories.

Dual objects

Let $\mathcal{M}=(\mathcal{M}, \otimes, I, c)$ be a symmetric monoidal category.
A duality $(\epsilon, \eta): A^{\star} \dashv A$ between two objects A and A^{\star} in \mathcal{M} is a pair of maps $\epsilon: A^{\star} \otimes A \rightarrow I$ and $\eta: I \rightarrow A \otimes A^{\star}$ such that the following diagrams commute:

In which case the functor $A^{\star} \otimes-: \mathcal{M} \rightarrow \mathcal{M}$ is left adjoint to the functor $A \otimes-: \mathcal{M} \rightarrow \mathcal{M}$. Moreover,

$$
(\epsilon, \eta): A^{\star} \dashv A \quad \Leftrightarrow \quad(\epsilon \sigma, \sigma \eta): A \dashv A^{\star}
$$

where $\sigma: A \otimes A^{\star} \rightarrow A^{\star} \otimes A$ is the symmetry.

Compact closed categories and traces

A symmetric monoidal category $\mathcal{M}=(\mathcal{M}, \otimes, I, c)$ is said to be compact closed if every object $A \in \mathcal{M}$ has a dual $A^{\star}:=\left(A^{\star}, \epsilon, \eta\right)$.

A compact closed category \mathcal{M} has an internal hom
$[A, B]:=A^{\star} \otimes B$. Every map $f: A \rightarrow B$ is represented by an element $\lceil f\rceil: I \rightarrow[A, B]$.
The trace map $\operatorname{tr}_{A}:[A, A] \rightarrow I$ is the co-unit $\epsilon: A^{\star} \otimes A \rightarrow I$.
The trace of an endomorphism $f: A \rightarrow A$ is defined to be the composite

$$
\operatorname{Tr}_{A}(f)=\operatorname{tr} \circ\lceil f\rceil: I \rightarrow I
$$

This defines a map

$$
\operatorname{Tr}_{A}: \operatorname{Hom}(A, A) \rightarrow \operatorname{Hom}(I, I)
$$

Trace and co-end

If $f: A \rightarrow B$ and $g: B \rightarrow A$, then $\operatorname{Tr}_{A}(g f)=\operatorname{Tr}_{B}(f g)$.
Hence the following square commutes for every map $g: B \rightarrow A$,

The induced map

$$
\int^{A \in \mathcal{M}} \operatorname{Hom}(A, A) \longrightarrow \operatorname{Hom}(I, I)
$$

is bijective.

Free compact closed categories I

We shall denote by $[\mathcal{E}, \mathcal{F}]$ the category of functors between two categories, and denote its sub-groupoid isomorphisms by $[\mathcal{E}, \mathcal{F}]^{\simeq}$

We shall denote by $\operatorname{SMon}[\mathcal{M}, \mathcal{N}]$ the category of symmetric monoidal functors (and symmetric monoidal transformations) between two symmetric monoidal categories, and denote its sub-groupoid of isomorphisms by $\operatorname{SMon}[\mathcal{M}, \mathcal{N}]^{\sim}$.

Definition

If \mathbb{A} is a category we shall say that a functor $u: \mathbb{A} \rightarrow \mathcal{C}(\mathbb{A})$ exhibits the compact closed category freely generated by \mathbb{A} if the category $\mathcal{C}(\mathbb{A})$ is a compact closed and the restriction functor

$$
u^{\star}: \operatorname{SMon}[C(\mathbb{A}), \mathcal{M}]^{\simeq} \rightarrow[\mathbb{A}, \mathcal{M}]^{\simeq}
$$

is an equivalence of groupoids for every compact closed category \mathcal{M}.

Free compact closed categories II

A variant of the following theorem was proved by Kelly-Laplaza (1980):

Theorem
[Kelly-Laplaza, Sharma] Every small category \mathbb{A} generates freely a compact closed category $u: \mathbb{A} \rightarrow \mathcal{C}(\mathbb{A})$.

The Kelly-Lapaza trace of a category \mathbb{A} is defined by putting

$$
\operatorname{KLT}(\mathbb{A}):=\int^{A \in \mathbb{A}} \mathbb{A}(A, A)
$$

Theorem

[Kelly-Laplaza] If \mathbb{A} is a category, then the commutative monoid $\mathcal{C}(\mathbb{A})(I, I)$ is freely generated by $\operatorname{KLT}(\mathbb{A})$.

The 2-category of distributors

Recall that a distributor $M: \mathbb{A} \Rightarrow \mathbb{B}$ between two small categories \mathbb{A} and \mathbb{B} is defined to be a functor $M: \mathbb{A}^{o p} \times \mathbb{B} \rightarrow$ Set.

Remark: A distributor $M: \mathbb{A} \Rightarrow \mathbb{B}$ is equivalent to a cocontinuous functor

$$
[M]:[\mathbb{A}, \operatorname{Se} t] \rightarrow[\mathbb{B}, \text { Set }]
$$

The composite $N \circ M$ of two distributors $M: \mathbb{A} \Rightarrow \mathbb{B}$ and $N: \mathbb{B} \Rightarrow \mathbb{C}$ is defined by putting

$$
(N \circ M)(A, C)=\int^{B \in \mathbb{B}} M(A, B) \times N(B, C)
$$

The identity distributor $1_{\mathbb{A}}: \mathbb{A} \Rightarrow \mathbb{A}$ is the hom functor

$$
\mathbb{A}(-,-): \mathbb{A}^{o p} \times \mathbb{A} \rightarrow \operatorname{Set}
$$

The 2-category of distributors is symmetric monoidal closed

The tensor product of two distributors $M: \mathbb{A} \Rightarrow \mathbb{B}$ and $N: \mathbb{C} \Rightarrow \mathbb{D}$ is the distributor $M \boxtimes N: \mathbb{A} \times \mathbb{C} \Rightarrow \mathbb{B} \times \mathbb{D}$ defined by letting

$$
(M \boxtimes N)(A \boxtimes C, B \boxtimes D):=M(A, B) \times N(C, D)
$$

for every $A \boxtimes C:=(A, C) \in \mathbb{A} \times \mathbb{C}$ and $B \boxtimes D:=(B, D) \in \mathbb{B} \times \mathbb{D}$.
The dual of a small category \mathbb{A} is its opposite $\mathbb{A}^{\circ p}$.
The unit $\eta: 1 \Rightarrow \mathbb{A} \times \mathbb{A}^{o p}$ is the functor $\eta: \mathbb{A} \times \mathbb{A}^{o p} \rightarrow$ Set defined by letting $\eta\left(A \boxtimes B^{\circ}\right):=\mathbb{A}(B, A)$.

The counit $\epsilon: \mathbb{A}^{o p} \times \mathbb{A} \Rightarrow 1$ is the functor $\epsilon:\left(\mathbb{A}^{o p} \times \mathbb{A}\right)^{o p} \rightarrow$ Set defined by letting $\epsilon\left(\left(A \boxtimes B^{\circ}\right)^{\circ}\right):=\mathbb{A}(B, A)$

The trace of a distributor is a coend

The trace of a distributor $M: \mathbb{A} \Rightarrow \mathbb{A}$ is equal to its coend

$$
\operatorname{Tr}(M)=\int^{A \in \mathbb{A}} M(A, A)
$$

The $K L$-trace of \mathbb{A} is the trace of the identity distributor $1_{\mathbb{A}}: \mathbb{A} \Rightarrow \mathbb{A}$

$$
K L T(\mathbb{A}):=\int^{A \in \mathbb{A}} \mathbb{A}(A, A)=: \operatorname{Tr}\left(1_{\mathbb{A}}\right)
$$

Compact closed ∞-categories

Here, ∞-categories = quasi-categories
The following notions were extended from categories to quasicategories by Lurie [HA].

- Symmetric monoidal categories \rightarrow symmetric monoidal quasicategories
- Dual object in a category \rightarrow dual object in a quasicategory
- Compact closed categories \rightarrow compact closed quasicategories
- Free compact closed categories \rightarrow free compact closed quasicategories

The ∞-category Bord $_{1}$

An object of the ∞-category Bord $_{1}$ is a compact oriented 0 -manifold (=finite signed set), and a morphisms $A \rightarrow B$ is a compact oriented 1-manifold with boundary M such that $\partial M=-A \sqcup B$.

We refer to [Lur] for a description of the higher cells of the quasi-category Bord $_{1}$.

The ∞-category Bord $_{1}$ is symmetric monoidal closed:

- $A \otimes B:=A \sqcup B$
- $M \otimes N:=M \sqcup N$

The unit object is the emptyset.

1-bordism

Composition of 1-bordisms

The space $\operatorname{Bord}_{1}(\emptyset, \emptyset)$

The space $\operatorname{Bord}_{1}(\emptyset, \emptyset)$ is the classifying space of compact oriented 1-manifolds without boundary.

Recall that every compact oriented 1-manifold without boundary is a finite disjoint union of oriented circles S^{1}.

The classifying space of compact connected oriented 1-manifolds without boundary is $B \operatorname{Diff}^{+}\left(S^{1}\right)$, where $\operatorname{Diff}^{+}\left(S^{1}\right)$ is the topological group of orientation preserving diffeomorphims of S^{1}.
The inclusion $S O(2) \subseteq \operatorname{Diff}^{+}\left(S^{1}\right)$ is a homotopy equivalence and $B S O(2)=K(\mathbb{Z}, 2)=\mathbb{C} P^{\infty}$.
It follows that

$$
\operatorname{Bord}_{1}(\emptyset, \emptyset)=\bigsqcup_{n \geq 0}\left(\mathbb{C} P^{\infty}\right)^{n} / / \Sigma_{n}
$$

