The rabbit calculus:
 convolution products on double categories and categorification of rule algebra

Paul-André Melliès
with Nicolas Behr (IRIF) and Noam Zeilberger (LIX)

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS \& Université Paris Cité \& INRIA

```
Logique, Homotopie, Catégories Université Paris Cité t \(6 \longrightarrow 7\) June 2023
```


The quest for causality in rewriting theory

An important insight coming from Huet and Lévy:
In order to track the causality structure relating different β-redexes, one needs to consider rewriting paths modulo permutations of the form

The quest for causality in rewriting theory

In the λ-calculus and term rewriting systems
A tradition based on optimality and residual theory
\triangleright the notion of Lévy families in the λ-calculus (Lévy 1980)
$\triangleright \quad$ their generalisation to any CRS (Asperti, Laneve 1995)
$\triangleright \quad$ a residual theory based on the notion of trek (PAM, 2002)
More recently, in categorical graph rewriting
\triangleright the notion of tracelet emerging in the work by Nicolas Behr.

Our ambition in this work is to initiate a convergence between these lines by revisiting/categorifying the work on tracelets using double categories.

Double categories

Definition. A (weak) double category \mathbb{D} consists of
\triangleright a category \mathbb{D}_{0} of objects,
\triangleright a category \mathbb{D}_{1} of horizontal maps,
\triangleright a pair of source and target functors

$$
\mathbb{D}_{0} \stackrel{T}{\longleftarrow} \mathbb{D}_{1} \xrightarrow{S} \mathbb{D}_{0}
$$

\triangleright a horizontal composition functor

$$
\diamond_{h}: \mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1} \longrightarrow \mathbb{D}_{1}
$$

- a horizontal identity functor

$$
\text { idh }: \mathbb{D}_{0} \longrightarrow \mathbb{D}_{1}
$$

satisfying a number of associativity and neutrality properties.

The category \mathbb{D}_{0} of vertical maps

A morphism in the category \mathbb{D}_{0} is represented as a vertical map

which may be composed vertically with other vertical maps.

The category \mathbb{D}_{1} of horizontal maps

An object in the category \mathbb{D}_{1} is represented as a horizontal map

$$
B \stackrel{r}{\longleftarrow} A
$$

A morphism in the category \mathbb{D}_{1} is represented as a double cell

which may be composed vertically with other double cells.

The category \mathbb{D}_{1} of horizontal maps

We often find convenient to use the pictorial notation

for the double cell usually noted

The category \mathbb{D}_{2} of paths of length 2

Every double category \mathbb{D} comes with a category $\mathbb{D}_{2}=\mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1}$ of horizontal paths of length 2
defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_{2} of paths of length 2

A typical morphism of \mathbb{D}_{2} has the shape

which we also like to depict as

The category \mathbb{D}_{3} of paths of length 3

Every double category \mathbb{D} comes with
a category \mathbb{D}_{3} of horizontal paths of length 3
defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_{3} of paths of length 3

A typical morphism of \mathbb{D}_{3} has the shape

which we also like to depict as

The category \mathbb{D}_{4} of paths of length 4

Every double category \mathbb{D} comes with
a category \mathbb{D}_{4} of horizontal paths of length 4
defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_{4} of paths of length 4

A typical morphism of \mathbb{D}_{4} has the shape

which we also like to depict as

Unbiased presentation of a double category

Every double category \mathbb{D} comes equipped with a family of functors

$$
h_{n}: \mathbb{D}_{n} \longrightarrow \mathbb{D}_{1}
$$

called the horizontal composition functors, and satisfying a number of associativity and neutrality properties.

This leads to an alternative (unbiased) definition of (weak) double category.
Note that the functors h_{2} and h_{0} coincide with the functors \diamond_{h} and $i d h$

$$
\begin{array}{lll}
h_{2}=\diamond h & : & \mathbb{D}_{2} \longrightarrow \mathbb{D}_{1} \\
h_{0}=i d h & : & \mathbb{D}_{0} \longrightarrow \mathbb{D}_{1}
\end{array}
$$

The double category DPO of double pushouts

The double category $\mathbb{D}=$ DPO on an adhesive category C
\triangleright whose objects are objects A, B, C of the cohesive category C,
\triangleright whose horizontal maps $M=(S, s, t)$ are spans in C,
\triangleright whose vertical maps $\lambda_{A}: A \rightarrow A^{\prime}$ are monos in C ,
$\triangleright \quad$ whose double cells $\theta: M \Rightarrow M^{\prime}$ are monos $\lambda_{\theta}: S \rightarrow S^{\prime}$ making the pushout diagram commute:

Rewriting rules as covariant presheaves

A rewriting rule provided by a horizontal map

$$
r: B \longleftarrow A
$$

is described in our framework as the representable presheaf

$$
\hat{\Delta}_{r}: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

which associates to every horizontal map

$$
u: \quad B^{\prime} \longleftarrow A^{\prime}
$$

the set

$$
\mathbb{D}_{1}(r, u)
$$

of all possible implementations of the transformation u by the rule r.

Category of elements of a presheaf

The Grothendieck construction

Elements of a covariant presheaf

Recall that an element

$$
(a, x) \in \operatorname{Elts}(F)
$$

of a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

is defined as a pair

$$
(a \in \mathbf{C} \quad, \quad x \in F(a))
$$

consisting of
$\triangleright \quad$ an object a of the underlying category C,
$\triangleright \quad$ an element x of the set $F(a)$.

Elements of a covariant presheaf

We find enlightening to draw such a pair

$$
(a \in \mathbf{C} \quad, \quad x \in F(a)) \in \operatorname{Elts}(F)
$$

in the following way

with the intuition that the element

$$
x \in F(a)
$$

provides a witness of the covariant presheaf F at instance $a \in \mathbf{C}$.

Covariant action of a presheaf

By definition of a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

every element

$$
(a \in \mathbf{C}, x \in F(a)) \in \operatorname{Elts}(F)
$$

and morphism of the category C

$$
\gamma: a \longrightarrow a^{\prime}
$$

induces an element

$$
\left(a^{\prime} \in \mathbf{C} \quad, \quad \gamma \cdot x=F(\gamma)(x) \in F\left(a^{\prime}\right) \quad\right) \in \operatorname{Elts}(F)
$$

Covariant action of a presheaf

This means that every diagram

can be completed into the diagram

The category of elements

The category Elts (F) of elements of a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

is defined in the following way:
$\triangleright \quad$ its objects are the elements (a, x) of the covariant presheaf F
\triangleright its morphisms

$$
(f, x):(a, x) \longrightarrow\left(a^{\prime}, x^{\prime}\right)
$$

are the pairs consisting of a morphism

$$
f: a \longrightarrow a^{\prime}
$$

of the category C and an element $x \in F(a)$ such that

$$
f \cdot x=F(f)(x)=x^{\prime}
$$

The category of elements

The category of elements

> Elts (F)
associated to a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

comes equipped with a projection functor

$$
\pi_{F} \quad: \quad \operatorname{Elts}(F) \longrightarrow \mathbf{C}
$$

which transports every element

$$
(a, x) \in \operatorname{Elts}(F)
$$

to the object $a \in \mathbf{C}$ of the underlying category \mathbf{C}.
Fact. The functor π_{F} defines a discrete opfibration.

Grothendieck opfibrations

Definition. A functor

$$
p: \mathrm{E} \longrightarrow \mathrm{C}
$$

is an opfibration when there exists an opcartesian morphism

for every object $R \in p^{-1}(A)$ and every morphism $u: A \rightarrow B$.

Opcartesian morphisms

A morphism $f: R \rightarrow S$ in E is opcartesian above $u: A \rightarrow B$ in C when the following property holds:
for every map $g: R \rightarrow T$
for every map $v: B \rightarrow C$ such that $p(g)=v \circ u$
there exists
a unique map $h: S \rightarrow T$
such that $h \circ f=g$
and $p(h)=v$.

The Grothendieck correspondence

The projection functor

$$
\pi_{F} \quad: \quad \text { Elts }(F) \longrightarrow \mathrm{C}
$$

is a discrete opfibration. Indeed, every diagram

can be completed with the opcartesian morphism (f, x) as follows:

The Grothendieck correspondence

Moreover, every natural transformation

induces a commutative diagram of discrete opfibrations:

The Grothendieck correspondence

Fact. This induces a categorical equivalence between
\triangleright The category [C, Ens] of covariant presheaves

$$
F, G \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

and natural transformations between them.
\triangleright The slice category DiscOpFib/C of discrete opfibrations above C.
Moreover, there is an adjunction

The Day convolution product

A construction on monoidal categories

The Day convolution product

Given two covariant presheaves

$$
F, G \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

on a monoidal category C with tensor product

$$
\otimes: \quad \mathrm{C} \times \mathrm{C} \longrightarrow \mathrm{C}
$$

the Day convolution product of F and G is the covariant presheaf

$$
G \hat{\otimes} F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

defined by the coend formula

$$
G \hat{\otimes} F=c \mapsto \int^{(b, a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)
$$

The Day convolution product

Equivalently, the convolution product

$$
G \hat{\otimes} F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

may be defined as the left Kan extension of the functor

$$
\mathrm{C} \times \mathrm{C} \xrightarrow{\mathrm{G} \times F} \text { Set } \times \text { Set } \xrightarrow{\times} \text { Set }
$$

along the tensor product functor:

What does the coend formula mean?

An element of the coend

$$
G \hat{\otimes} F(c)=\int^{(b, a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)
$$

consists of a morphism

$$
b \otimes a \xrightarrow{\gamma} c
$$

together with a pair of elements

$$
y \in G(b) \quad x \in F(a)
$$

considered modulo an equivalence relation \sim.

What does the coend formula mean?

As we did before, we find enlightening to draw the two elements

$$
y \in G(b) \quad x \in F(a)
$$

in the following way:

What does the coend formula mean?

Accordingly, we like to draw the triple

$$
(\quad b \otimes a \xrightarrow{\gamma} c \quad, \quad x \in F(a) \quad, \quad y \in G(b) \quad)
$$

in the following way:

What does the coend formula mean?

Suppose given a pair of elements

$$
x \in F(a) \quad y \in G(b)
$$

a pair of morphisms

$$
\alpha: a \longrightarrow a^{\prime} \quad \beta: b \longrightarrow b^{\prime}
$$

and a morphism

$$
\gamma: a^{\prime} \otimes b^{\prime} \longrightarrow c
$$

What does the coend formula mean?

The situation may be depicted as follows:

What does the coend formula mean?

The diagram may be completed as follows:

What does the coend formula mean?

This equivalence relation \sim defined by the coend

$$
G \hat{\otimes} F(c)=\int^{(b, a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)
$$

identifies every triple of the form

$$
\left(\quad b \otimes a \xrightarrow{\beta \otimes a} b^{\prime} \otimes a^{\prime} \xrightarrow{\gamma} c \quad, \quad x \in F(a) \quad, \quad y \in G(b) \quad\right)
$$

with the corresponding triple

$$
\left(b^{\prime} \otimes a^{\prime} \xrightarrow{\gamma} c \quad, \quad \alpha \cdot x \in F\left(a^{\prime}\right) \quad, \quad \beta \cdot y \in G\left(b^{\prime}\right)\right)
$$

What does the coend formula mean?

Diagrammatically, the equivalence relation \sim identifies the two triples:

The Day convolution product

Theorem [Day 1970] The convolution product

$$
G, F \quad \mapsto \quad G \hat{\otimes} F
$$

on a monoidal category C with tensor product \otimes defines a functor

$$
\hat{\otimes} \quad: \quad[\mathrm{C}, \text { Set }] \times[\mathrm{C}, \text { Set }] \longrightarrow[\mathrm{C}, \text { Set }]
$$

which equips the category of covariant presheaves
[C, Set]
with the structure of a monoidal closed category.
In particular, the convolution product is associative:

$$
H \hat{\otimes}(G \hat{\otimes} F) \cong(H \hat{\otimes} G) \hat{\otimes} F
$$

A key observation

Fact. The projection functor

$$
\pi_{G \hat{\otimes} F}: \operatorname{Elts}(G \hat{\otimes} F) \longrightarrow \mathbf{C}
$$

associated to the Day convolution product

$$
G \hat{\otimes} F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

is the free discrete opfibration associated to the functor

$$
\text { Elts }(G) \times \operatorname{Elts}(F) \xrightarrow{\pi_{G} \times \pi_{F}} \mathbf{C} \times \mathbf{C} \xrightarrow{\otimes}
$$

obtained by tensoring the two projection functors

$$
\text { Elts }(G) \xrightarrow{\pi_{G}} \mathrm{C} \quad \text { Elts }(F) \xrightarrow{\pi_{F}} \mathrm{C}
$$

Construction of the free discrete opfibration

Step 0. We start from the functor

$$
\text { Elts }(G) \times \text { Elts }(F) \xrightarrow{\pi_{G} \times \pi_{F}} \mathbf{C} \times \mathbf{C} \xrightarrow{\otimes} \mathbf{C}
$$

whose objects in the source category are pairs

$$
(x \in F(a) \quad, \quad y \in G(b) \quad)
$$

may be depicted in the following way:

Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

$$
\text { Elts }(G, F) \longrightarrow C
$$

where the source category Elts (G, F) has objects defined as triples

$$
(\quad b \otimes a \xrightarrow{\gamma} c \quad, \quad x \in F(a) \quad, \quad y \in G(b))
$$

which may be depicted in the following way:

Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

whose morphisms in each fiber above $c \in \mathbf{C}$ are of the form:

Construction of the free discrete opfibration

Step 2. Replace each fiber category of the opfibration

by its set of connected components, using the equivalence relation:

A key observation

From this follows that there exists a cofinal functor

$$
\text { Elts }(G) \times \operatorname{Elts}(F) \longrightarrow \text { Elts }(G \hat{\otimes} F)
$$

making the diagram commute:

in the category Cat of categories and functors.

A key observation

The category Cat/C inherits a tensor product

$$
\tilde{\otimes} \quad: \quad \mathrm{Cat} / \mathrm{C} \times \mathrm{Cat} / \mathrm{C} \longrightarrow \mathrm{Cat} / \mathrm{C}
$$

from the monoidal structure of the category C .
The Day tensor product
$\hat{\otimes}:$ DiscOpFib/C \times DiscOpFib/C \longrightarrow DiscOpFib/C
is the monoidal structure obtained by transporting $\tilde{\otimes}$ along the adjunction

The convolution product on double categories

Extending the Day construction

The convolution product on double categories

Given two covariant presheaves

$$
F, G \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

on a double category \mathbb{D} with horizontal composition

$$
\diamond_{h}: \quad \mathbb{D}_{2}=\mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1} \longrightarrow \mathbb{D}_{1}
$$

the convolution product of F and G is the covariant presheaf

$$
G * F \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

defined by the coend formula:

$$
G * F=t \mapsto \int^{(s, r) \in \mathbb{D}_{2}} \mathbb{D}_{1}\left(s \diamond_{h} r, t\right) \times G(s) \times F(r)
$$

The convolution product

Equivalently, the convolution product

$$
G * F \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

may be defined as the left Kan extension of the functor

$$
\mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1} \xrightarrow{\text { proj }} \mathbb{D}_{1} \times \mathbb{D}_{1} \xrightarrow{G \times F} \text { Set } \times \text { Set } \xrightarrow{\times} \text { Set }
$$

along the tensor product functor:

What does the coend formula mean?

An element of the coend

$$
G * F(t)=\int^{(s, r) \in \mathbb{D}_{2}} \mathbb{D}_{1}\left(s \diamond_{h} r, t\right) \times G(s) \times F(r)
$$

consists of a double cell of the form

together with a pair of elements

$$
y \in G(s) \quad x \in F(r)
$$

considered modulo an equivalence relation noted \sim.

What does the coend formula mean?

We find enlightening to draw the triple

$$
\left(s \diamond_{h} r \xlongequal{\gamma} t \quad, \quad x \in F(r) \quad, \quad y \in G(s) \quad\right)
$$

in the following way:

This picture is the reason we like to speak of the rabbit calculus.

What does the coend formula mean?

Suppose given a pair of elements

$$
x \in F(r) \quad y \in G(s)
$$

a pair of double cells

$$
\alpha: r \Longrightarrow r^{\prime} \quad \beta: s \Longrightarrow s^{\prime}
$$

and a double cell

$$
\gamma: s^{\prime} \diamond_{h} r^{\prime} \Longrightarrow t
$$

What does the coend formula mean?

The five components may be depicted as follows:

What does the coend formula mean?

The equivalence relation \sim defined by the coend

$$
G * F(t)=\int^{(s, r) \in \mathbb{D}_{2}} \mathbb{D}_{1}\left(s \diamond_{h} r, t\right) \times G(s) \times F(r)
$$

identifies every triple of the form

Main structural theorem

Theorem [Behr, PAM, Zeilberger]

The convolution product

$$
G, F \quad \mapsto \quad G * F
$$

on a double category \mathbb{D} defines a functor

$$
\text { * : } \widehat{\mathbb{D}} \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}
$$

which equips the category of covariant presheaves

$$
\widehat{\mathbb{D}}:=\left[\mathbb{D}_{1}, \mathrm{Set}\right]
$$

with the structure of an oplax monoidal closed category.

What oplax monoidal means...

The category of covariant presheaves

$$
\widehat{\mathbb{D}}:=\left[\mathbb{D}_{1}, \text { Set }\right]
$$

comes equipped with a family of convolution products

$$
*_{n} \quad: \widehat{\mathbb{D}} \times \cdots \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}
$$

where we use the notation

$$
\left(F_{n} * \cdots * F_{1}\right):=*_{n}\left(F_{n}, \ldots, F_{1}\right)
$$

for the n-ary product of n covariant presheaves

$$
F_{n}, \ldots, F_{1} \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set. }
$$

The ternary convolution product

Typically, the ternary convolution product

$$
H * G * F \quad: \quad \mathbf{C} \longrightarrow \text { Set }
$$

of three covariant presheaves H, G, F is defined by the coend formula

$$
H * G * F=u \mapsto \int^{(t, s, r) \in \mathbb{D}_{3}} \mathbb{D}_{1}\left(t \diamond_{h} s \diamond_{h} r, u\right) \times H(t) \times G(s) \times F(r)
$$

where \mathbb{D}_{3} is the category of horizontal paths of length 3 .

The ternary convolution product

The elements of the ternary convolution product are quadruples

$$
\left(\diamond_{h} s \diamond_{h} r \xlongequal{\delta} u \quad, \quad x \in F(r) \quad, \quad y \in G(s) \quad, \quad z \in G(t)\right)
$$

which may be depicted in the following way:

The ternary convolution product

The elements of the convolution product

$$
\left(t \diamond_{h} s \diamond_{h} r \xlongequal{\delta} u \quad, \quad x \in F(r) \quad, \quad y \in G(s) \quad, \quad z \in G(t)\right)
$$

are identified modulo the equivalence relation:

What oplax monoidal means...

The convolution products are related by associativity maps such as

$$
H *(G * F) \stackrel{\text { assoc }}{\longleftrightarrow}(H * G * F) \xrightarrow{\text { assoc }}(H * G) * F
$$

which are not reversible in general, for the following reason:

What oplax monoidal means...

In a general double category \mathbb{D}, not every composite shape of the form

defining an element of the presheaf $H *(G * F)$ at instance $u: A \longrightarrow A^{\prime}$

What oplax monoidal means...

is equivalent modulo \sim in \mathbb{D} to a ternary shape of the form

defining an element of $H * G * F$ at the same instance $u: A \longrightarrow A^{\prime}$.

Sketch of the proof

Key observation. The projection functor

$$
\pi_{G * F}: \quad \text { Elts }(G * F) \longrightarrow \mathbb{D}_{1}
$$

associated to the binary convolution product

$$
G * F \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

is the free discrete opfibration associated to the functor
Elts $(G) \circledast \operatorname{Elts}(F)=\operatorname{Elts}(G) \times_{\mathbb{D}_{0}} \operatorname{Elts}(F) \xrightarrow{\pi_{G} \circledast \pi_{F}} \mathbb{D}_{2} \xrightarrow{h_{2}} \mathbb{D}_{1}$
obtained by composing the two projection functors above \mathbb{D}_{1}

$$
\text { Elts }(G) \xrightarrow{\pi_{G}} \mathbb{D}_{1} \quad \text { Elts }(F) \xrightarrow{\pi_{F}} \mathbb{D}_{1}
$$

Sketch of the proof

Sketch of the proof

Similarly, the projection functor

$$
\pi_{H * G * F}: \operatorname{Elts}(H * G * F) \longrightarrow \mathbb{D}_{1}
$$

associated to the ternary convolution product

$$
H * G * F \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

is the free discrete opfibration associated to the functor

$$
\operatorname{Elts}(H) \circledast \operatorname{Elts}(G) \circledast \operatorname{Elts}(F) \xrightarrow{\pi_{H} \circledast \pi_{G} \circledast \pi_{F}} \mathbb{D}_{3} \xrightarrow{h_{3}} \mathbb{D}_{1}
$$

obtained by composing the three projection functors above \mathbb{D}_{1}

$$
\operatorname{Elts}(H) \xrightarrow{\pi_{H}} \mathbb{D}_{1} \quad \text { Elts }(G) \xrightarrow{\pi_{G}} \mathbb{D}_{1} \quad \text { Elts }(F) \xrightarrow{\pi_{F}} \mathbb{D}_{1}
$$

Sketch of the proof

Main argument of the proof

The category $\mathrm{Cat} / \mathbb{D}_{1}$ inherits a monoidal structure

$$
\circledast \quad: \quad \mathrm{Cat} / \mathbb{D}_{1} \times \mathrm{Cat} / \mathbb{D}_{1} \longrightarrow \mathrm{Cat} / \mathbb{D}_{1}
$$

computed by pullback using the double categorical structure of \mathbb{D}.
The convolution product

$$
\text { * : DiscOpFib } / \mathbb{D}_{1} \times \text { DiscOpFib } / \mathbb{D}_{1} \longrightarrow \text { DiscOpFib } / \mathbb{D}_{1}
$$

is the oplax monoidal structure obtained by transporting on $\widehat{\mathbb{D}}=\left[\mathbb{D}_{1}\right.$, Set $]$ the strong monoidal structure \circledast on $\mathrm{Cat} / \mathbb{D}_{1}$ along the adjunction

Cylindrical decomposition property

A sufficient condition to ensure strong associativity

Towards strong associativity

We want to find a sufficient condition on a double category

$$
\left(\mathbb{D}, h_{n}: \mathbb{D}_{n} \longrightarrow \mathbb{D}_{1}\right)
$$

ensuring that the associativity maps of the convolution product

$$
H *(G * F) \stackrel{\text { assoc }}{\longleftarrow}(H * G * F) \xrightarrow{\text { assoc }}(H * G) * F
$$

are reversible.

Towards strong associativity

In particular, this requires to show that every composite shape

defining an element of the presheaf $H *(G * F)$ at instance $u: A \longrightarrow A^{\prime}$

Towards strong associativity

is equivalent modulo \sim in \mathbb{D} to a ternary shape of the form

defining an element of $H * G * F$ at the same instance $u: A \longrightarrow A^{\prime}$.

Towards strong associativity

Suppose that every double cell of the form

factors in the following way:

Towards strong associativity

In that case, one can rewrite the original composite shape

Towards strong associativity

We then into the shape where the cell γ has been factored:

Towards strong associativity

then into the equivalent shape using the equivalence relation \sim

Towards strong associativity

then into the equal shape by vertical composition:

Towards strong associativity

and finally in the ternary shape we were looking for:

The cylinder categories

Every double category \mathbb{D} comes equipped with a family of categories

$$
\mathrm{Cyl}_{\mathbb{D}}[n]
$$

called cylinder categories and defined in the following way:
$\triangleright \quad$ the objects of $\mathrm{Cyl}_{\mathbb{D}}[n]$ are the tuples

$$
\sigma=\left(s_{n}, \ldots, s_{1}, s, \sigma: s_{n} \diamond_{h} \cdots \diamond_{h} s_{1} \Rightarrow s\right)
$$

defining a globular cell of the form

The cylinder categories

$\triangleright \quad$ given globular cells

$$
\begin{aligned}
\sigma & =\left(s_{n}, \ldots, s_{1}, s, \sigma: s_{n} \diamond_{h} \cdots \diamond_{h} s_{1} \Rightarrow s\right) \\
\tau & =\left(t_{n}, \ldots, t_{1}, t, \tau: t_{n} \diamond_{h} \cdots \diamond_{h} t_{1} \Rightarrow t\right)
\end{aligned}
$$

the morphisms of $\mathrm{Cyl}_{\mathbb{D}}[n]$ of the form

$$
\left(\varphi_{n}, \cdots, \varphi_{1}, \varphi\right) \quad: \quad \sigma \longrightarrow \tau
$$

are tuples consisting of a map in \mathbb{D}_{n}

$$
\left(\varphi_{n}, \ldots, \varphi_{1}\right): \quad\left(s_{n}, \ldots, s_{1}\right) \Rightarrow\left(t_{n}, \ldots, t_{1}\right)
$$

and of a double cell

$$
\varphi \quad: \quad s \Rightarrow t
$$

The cylinder categories

such that the double cell $\varphi \circ \sigma$ depicted below

The cylinder categories

is equal to the double cell $\tau \circ\left(\varphi_{n} \diamond_{h} \cdots \diamond_{h} \varphi_{1}\right)$ depicted below

The cylindrical decomposition property

Key observation: each composition functor

$$
h_{n}: \mathbb{D}_{n} \longrightarrow \mathbb{D}_{1}
$$

of the double category \mathbb{D} factors as

$$
\mathbb{D}_{n} \longrightarrow \mathrm{Cyl}_{\mathbb{D}}[n] \xrightarrow{\pi_{n}} \mathbb{D}_{1}
$$

Definition. A double category \mathbb{D} satisfies
the n-cylindrical decomposition property (n-CDP)
when the functor

$$
\mathrm{Cyl}_{\mathbb{D}}[n] \xrightarrow{\pi_{n}} \mathbb{D}_{1}
$$

is an opfibration.

Main theorem

Theorem. [Behr,PAM,Zeilberger]

Suppose that a double category \mathbb{D} satisfies the n-cylindrical decomposition property (n-CDP)
for all $n \in \mathbb{N}$.
In that case, the convolution product defines a functor

$$
\text { * : } \widehat{\mathbb{D}} \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}
$$

which equips the category of covariant presheaves

$$
\widehat{\mathbb{D}}:=\left[\mathbb{D}_{1}, \text { Set }\right]
$$

with the structure of an strong monoidal closed category.

Main theorem

In particular, the associativity maps are reversible in that case:

$$
H *(G * F) \stackrel{\text { assoc }}{\longleftarrow}(H * G * F) \xrightarrow{\text { assoc }}(H * G) * F
$$

Reversibility comes from the cylindrical decomposition property of \mathbb{D}.

Illlustrations

The theorem applies to the following situations:
$\triangleright \quad$ every bicategory $\mathbb{D}=\mathscr{W}$ satisfies n-CDP,
$\triangleright \quad$ every framed bicategory $\mathbb{D}=\mathcal{W}$ satisfies n-CDP for $n \geq 1$,
$\triangleright \quad$ the double category $\mathbb{D}=$ DPO satisfies n-CDP for $n \geq 1$.
More generally, the theorem enables us to use the convolution product for a number of categorical graph rewriting frameworks.

Categorifying rule algebras

Composing representable presheaves by convolution

Categorification of rule algebras

One main ingredient of rule algebras is the following equation

$$
\delta(r) \star \delta(s)=\sum_{\mu \in \mathcal{M}_{r}(s)} \delta\left(r_{\mu} s\right)
$$

where
$\triangleright \quad \mathcal{M}_{r}(s)$ is the set of admissible matches of rule r into rule s
$\triangleright \quad r_{\mu}$ s denotes one possible way to get a composite rule from r and s.
Similarly, we want to find sufficient conditions on \mathbb{D} such that

$$
\hat{\Delta}_{r} * \hat{\Delta}_{s}=\sum_{\mu \in \mathcal{M}_{r}(s)} \hat{\Delta}_{r_{\mu} s}
$$

where the sum is now set-theoretic union.

Multi-sums

Suppose that A and B are objects in a category C .
Definition. A multi-sum of A and B is a family of cospans

$$
\left(A \xrightarrow{a_{i}} U_{i} \stackrel{b_{i}}{\longleftarrow} B\right)_{i \in I}
$$

such that for any cospan

$$
A \xrightarrow{f} X \stackrel{g}{\leftrightarrows} B
$$

there exists a unique $i \in I$ and a unique morphism

$$
[f, g]: \quad U_{i} \xrightarrow{f} X
$$

such that

$$
f=[f, g] \circ a_{i} \quad \text { and } \quad g=[f, g] \circ b_{i} .
$$

Categorification of rule algebras

Assume \mathbb{D} is a small double category satisfying
$\triangleright \quad$ the vertical category \mathbb{D}_{0} has multi-sums,
$\triangleright \quad$ the source and target functors $S, T: \mathbb{D}_{1} \rightarrow \mathbb{D}_{0}$ are opfibrations.
In that case, the convolution product of two representable presheaves is isomorphic to the sum of representables

$$
\hat{\Delta}_{r_{2}} * \hat{\Delta}_{r_{1}} \cong \sum_{i \in I} \hat{\Delta}_{r_{2}\left\langle c_{i}\right\rangle \diamond_{h}\left\langle b_{i}\right\rangle r_{1}}
$$

where the multi-sum of B and C is given by a family of cospans

$$
\left(B \stackrel{b_{i}}{\longrightarrow} U_{i} \stackrel{c_{i}}{\leftarrow} C\right)_{i \in I}
$$

and where $r_{2}\left\langle c_{i}\right\rangle$ denotes the S-pushforward of r_{2} along c_{i} and $\left\langle b_{i}\right\rangle r_{1}$ denotes the T-pushforward of r_{1} along b_{i}.

Thank you!

