The rabbit calculus: convolution products on double categories and categorification of rule algebra

Paul-André Melliès with Nicolas Behr (IRIF) and Noam Zeilberger (LIX)

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS & Université Paris Cité & INRIA

> Logique, Homotopie, Catégories Université Paris Cité \pm 6 \longrightarrow 7 June 2023

The quest for causality in rewriting theory

An important insight coming from Huet and Lévy:

In order to track the **causality structure** relating different β -redexes, one needs to consider rewriting paths modulo **permutations** of the form

The quest for causality in rewriting theory

In the λ -calculus and term rewriting systems

A tradition based on **optimality** and **residual theory**

- ▶ the notion of **Lévy families** in the λ -calculus (Lévy 1980)
- ▶ their generalisation to any CRS (Asperti, Laneve 1995)
- ▷ a residual theory based on the notion of trek (PAM, 2002)

More recently, in categorical graph rewriting

▶ the notion of **tracelet** emerging in the work by Nicolas Behr.

Our ambition in this work is to initiate a convergence between these lines by revisiting/categorifying the work on tracelets using **double categories**.

Double categories

Definition. A (weak) **double category** \mathbb{D} consists of

- \triangleright a category \mathbb{D}_0 of objects,
- \triangleright a category \mathbb{D}_1 of horizontal maps,
- a pair of source and target functors

$$\mathbb{D}_0 \xleftarrow{T} \mathbb{D}_1 \xrightarrow{S} \mathbb{D}_0$$

a horizontal composition functor

 $\diamond_h \quad : \quad \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \longrightarrow \mathbb{D}_1$

a horizontal identity functor

 $idh \quad : \quad \mathbb{D}_0 \longrightarrow \mathbb{D}_1$

satisfying a number of **associativity** and **neutrality** properties.

The category \mathbb{D}_0 of vertical maps

A morphism in the category \mathbb{D}_0 is represented as a vertical map

which may be **composed vertically** with other vertical maps.

The category \mathbb{D}_1 of horizontal maps

An object in the category \mathbb{D}_1 is represented as a **horizontal map**

$$B \xleftarrow{r} A$$

A morphism in the category \mathbb{D}_1 is represented as a **double cell**

which may be **composed vertically** with other double cells.

The category \mathbb{D}_1 of horizontal maps

We often find convenient to use the pictorial notation

for the double cell usually noted

The category \mathbb{D}_2 of paths of length 2

Every double category D comes with

a category $\mathbb{D}_2 = \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1$ of horizontal paths of length 2

defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_2 of paths of length 2

A typical morphism of \mathbb{D}_2 has the shape

which we also like to depict as

The category \mathbb{D}_3 of paths of length 3

Every double category \mathbb{D} comes with

a category \mathbb{D}_3 of horizontal paths of length 3

defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_3 of paths of length 3

A typical morphism of \mathbb{D}_3 has the shape

which we also like to depict as

The category \mathbb{D}_4 of paths of length 4

Every double category D comes with

a category \mathbb{D}_4 of horizontal paths of length 4

defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_4 of paths of length 4

A typical morphism of \mathbb{D}_4 has the shape

which we also like to depict as

Unbiased presentation of a double category

Every double category \mathbb{D} comes equipped with a family of functors

 $h_n : \mathbb{D}_n \longrightarrow \mathbb{D}_1$

called the **horizontal composition** functors, and satisfying a number of **associativity** and **neutrality** properties.

This leads to an alternative (unbiased) definition of (weak) double category.

Note that the functors h_2 and h_0 coincide with the functors \diamond_h and *idh*

$$h_2 = \diamond_h \quad : \quad \mathbb{D}_2 \longrightarrow \mathbb{D}_1$$
$$h_0 = idh \quad : \quad \mathbb{D}_0 \longrightarrow \mathbb{D}_1$$

The double category **DPO** of double pushouts

The double category $\mathbb{D} = \mathbb{D}PO$ on an adhesive category C

- \triangleright whose objects are objects A, B, C of the cohesive category C,
- ▷ whose horizontal maps M = (S, s, t) are spans in **C**,
- ▷ whose vertical maps $\lambda_A : A \to A'$ are monos in **C**,
- ▶ whose double cells $\theta : M \Rightarrow M'$ are monos $\lambda_{\theta} : S \rightarrow S'$ making the pushout diagram commute:

Rewriting rules as covariant presheaves

A rewriting rule provided by a horizontal map

r : $B \leftarrow A$

is described in our framework as the representable presheaf

 $\hat{\Delta}_r : \mathbb{D}_1 \longrightarrow \mathbf{Set}$

which associates to every horizontal map

 $u : B' \longleftarrow A'$

the set

 $\mathbb{D}_1(r, u)$

of all possible **implementations** of the transformation *u* by the rule *r*.

Category of elements of a presheaf

The Grothendieck construction

Elements of a covariant presheaf

Recall that an element

 $(a, x) \in \operatorname{Elts}(F)$ of a covariant presheaf $F : \mathbb{C} \longrightarrow \operatorname{Set}$ is defined as a pair $\left(\begin{array}{cc} a \in \mathbb{C} & , & x \in F(a) \end{array}\right)$ consisting of

- \triangleright an object *a* of the underlying category **C**,
- \triangleright an element x of the set F(a).

Elements of a covariant presheaf

We find enlightening to draw such a pair

$$\left(a \in \mathbf{C} , x \in F(a) \right) \in \mathbf{Elts}(F)$$

F

а

in the following way

with the intuition that the element

 $x \in F(a)$

provides a witness of the covariant presheaf F at instance $a \in C$.

Covariant action of a presheaf

By definition of a covariant presheaf

$$F : \mathbf{C} \longrightarrow \mathbf{Set}$$

every element

$$\left(\begin{array}{cc} a \in \mathbf{C} & , & x \in F(a) \end{array}\right) \in \mathbf{Elts}(F)$$

and morphism of the category C

$$\gamma \quad : \quad a \longrightarrow a'$$

induces an element

$$\left(\begin{array}{cc}a' \in \mathbf{C} , \quad \gamma \cdot x = F(\gamma)(x) \in F(a')\end{array}\right) \in \mathbf{Elts}\left(F\right)$$

Covariant action of a presheaf

This means that every diagram

can be completed into the diagram

The category of elements

The category Elts(F) of elements of a covariant presheaf

$$F \quad : \quad \mathbf{C} \longrightarrow \mathbf{Set}$$

is defined in the following way:

- \triangleright its objects are the elements (a, x) of the covariant presheaf F
- its morphisms

$$(f, x) \quad : \quad (a, x) \longrightarrow (a', x')$$

are the pairs consisting of a morphism

$$f : a \longrightarrow a'$$

of the category C and an element $x \in F(a)$ such that

$$f \cdot x = F(f)(x) = x'$$

The category of elements

The category of elements

Elts (F)

associated to a covariant presheaf

 $F : \mathbf{C} \longrightarrow \mathbf{Set}$

comes equipped with a projection functor

 π_F : **Elts** (F) \longrightarrow **C**

which transports every element

 $(a, x) \in \mathbf{Elts}(F)$

to the object $a \in C$ of the underlying category C.

Fact. The functor π_F defines a **discrete opfibration**.

Grothendieck opfibrations

Definition. A functor

 $p : \mathbf{E} \longrightarrow \mathbf{C}$

is an opfibration when there exists an opcartesian morphism

for every object $R \in p^{-1}(A)$ and every morphism $u : A \to B$.

Opcartesian morphisms

A morphism $f : R \to S$ in **E** is opcartesian above $u : A \to B$ in **C** when the following property holds:

The Grothendieck correspondence

The projection functor

 π_F : **Elts**(*F*) \longrightarrow **C**

is a discrete opfibration. Indeed, every diagram

can be completed with the opcartesian morphism (f, x) as follows:

The Grothendieck correspondence

Moreover, every natural transformation

induces a commutative diagram of discrete opfibrations:

The Grothendieck correspondence

- Fact. This induces a categorical equivalence between
- ▷ The category [C, Ens] of covariant presheaves

F,G : $\mathbf{C} \longrightarrow \mathbf{Set}$

and natural transformations between them.

 \triangleright The slice category **DiscOpFib**/**C** of **discrete opfibrations** above **C**.

Moreover, there is an adjunction

The Day convolution product

A construction on monoidal categories

The Day convolution product

Given two covariant presheaves

F,G : $\mathbf{C} \longrightarrow \mathbf{Set}$

on a monoidal category **C** with tensor product

 $\otimes \quad : \quad \mathbf{C} \times \mathbf{C} \longrightarrow \mathbf{C}$

the **Day convolution product** of F and G is the covariant presheaf

 $G \otimes F : \mathbf{C} \longrightarrow \mathbf{Set}$

defined by the coend formula

$$G \otimes F = c \mapsto \int^{(b,a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)$$

The Day convolution product

Equivalently, the convolution product

 $G \otimes F : \mathbf{C} \longrightarrow \mathbf{Set}$

may be defined as the left Kan extension of the functor

$$\mathbf{C} \times \mathbf{C} \xrightarrow{G \times F} \mathbf{Set} \times \mathbf{Set} \xrightarrow{\times} \mathbf{Set}$$

along the tensor product functor:

An element of the coend

$$G \otimes F(c) = \int^{(b,a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)$$

consists of a morphism

$$b \otimes a \xrightarrow{\gamma} c$$

together with a pair of elements

 $y \in G(b)$ $x \in F(a)$

considered modulo an equivalence relation \sim .

As we did before, we find enlightening to draw the two elements

 $y \in G(b)$ $x \in F(a)$

in the following way:

Accordingly, we like to draw the triple

$$(b \otimes a \xrightarrow{\gamma} c , x \in F(a) , y \in G(b))$$

in the following way:

Suppose given a pair of elements

 $x \in F(a) \qquad \qquad y \in G(b)$

a pair of morphisms

 $\alpha : a \longrightarrow a' \qquad \beta : b \longrightarrow b'$

and a morphism

 $\gamma : a' \otimes b' \longrightarrow c$

The situation may be depicted as follows:

The diagram may be completed as follows:

This equivalence relation \sim defined by the coend

$$G \otimes F(c) = \int^{(b,a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)$$

identifies every triple of the form

$$\left(b \otimes a \xrightarrow{\beta \otimes \alpha} b' \otimes a' \xrightarrow{\gamma} c \quad , \quad x \in F(a) \quad , \quad y \in G(b) \right)$$

with the corresponding triple

$$\left(\begin{array}{ccc} b' \otimes a' \xrightarrow{\gamma} c & , & \alpha \cdot x \in F(a') & , & \beta \cdot y \in G(b') \end{array} \right)$$

Diagrammatically, the equivalence relation \sim identifies the two triples:

The Day convolution product

Theorem [Day 1970] The convolution product

 $G, F \mapsto G \otimes F$

on a monoidal category C with tensor product \otimes defines a functor

 $\hat{\otimes}$: $[C, Set] \times [C, Set] \longrightarrow [C, Set]$

which equips the category of covariant presheaves

[C, Set]

with the structure of a monoidal closed category.

In particular, the convolution product is associative:

 $H \,\hat{\otimes}\, (G \,\hat{\otimes}\, F) \quad \cong \quad (H \,\hat{\otimes}\, G) \,\hat{\otimes}\, F$

A key observation

 $\pi_{G\hat{\otimes}F}$: Elts $(G\hat{\otimes}F)$ \longrightarrow C

associated to the Day convolution product

 $G \otimes F : \mathbf{C} \longrightarrow \mathbf{Set}$

is the free discrete opfibration associated to the functor

 $\mathbf{Elts}\,(G) \times \mathbf{Elts}\,(F) \xrightarrow{\pi_G \times \pi_F} \mathbf{C} \times \mathbf{C} \xrightarrow{\otimes} \mathbf{C}$

obtained by tensoring the two projection functors

$$\mathbf{Elts}\,(G) \xrightarrow{\pi_G} \mathbf{C} \qquad \mathbf{Elts}\,(F) \xrightarrow{\pi_F} \mathbf{C}$$

Step 0. We start from the functor

Elts (G) × Elts (F)
$$\xrightarrow{\pi_G \times \pi_F} \mathbf{C} \times \mathbf{C} \xrightarrow{\otimes} \mathbf{C}$$

whose objects in the source category are pairs

$$\begin{pmatrix} x \in F(a) & , y \in G(b) \end{pmatrix}$$

may be depicted in the following way:

Step 1. We replace the functor by its free split opfibration

Elts (*G*, *F*)
$$\longrightarrow$$
 C

where the source category Elts (G, F) has objects defined as triples

$$b \otimes a \xrightarrow{\gamma} c$$
 , $x \in F(a)$, $y \in G(b)$

which may be depicted in the following way:

Step 1. We replace the functor by its free split opfibration

Elts (*G*, *F*)
$$\longrightarrow$$
 C

whose morphisms in each fiber above $c \in \mathbb{C}$ are of the form:

Step 2. Replace each fiber category of the opfibration

by its set of **connected components**, using the equivalence relation:

A key observation

From this follows that there exists a cofinal functor

Elts (*G*) × **Elts** (*F*) \longrightarrow **Elts** (*G* $\hat{\otimes}$ *F*)

making the diagram commute:

in the category Cat of categories and functors.

A key observation

The category Cat/C inherits a tensor product

 $\tilde{\otimes}$: Cat/C × Cat/C \longrightarrow Cat/C

from the monoidal structure of the category C.

The Day tensor product

 $\hat{\otimes}$: DiscOpFib/C \times DiscOpFib/C \longrightarrow DiscOpFib/C

is the monoidal structure obtained by transporting $\tilde{\otimes}$ along the adjunction

The convolution product on double categories

Extending the Day construction

The convolution product on double categories

Given two covariant presheaves

F,G : $\mathbb{D}_1 \longrightarrow \mathbf{Set}$

on a double category D with horizontal composition

 \diamond_h : $\mathbb{D}_2 = \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \longrightarrow \mathbb{D}_1$

the **convolution product** of F and G is the covariant presheaf

 $G * F : \mathbb{D}_1 \longrightarrow \mathbf{Set}$

defined by the coend formula:

$$G * F = t \mapsto \int^{(s,r) \in \mathbb{D}_2} \mathbb{D}_1(s \diamond_h r, t) \times G(s) \times F(r)$$

The convolution product

Equivalently, the convolution product

 $G * F : \mathbb{D}_1 \longrightarrow \mathbf{Set}$

may be defined as the left Kan extension of the functor

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow{\text{proj}} \mathbb{D}_1 \times \mathbb{D}_1 \xrightarrow{G \times F} \mathbf{Set} \times \mathbf{Set} \xrightarrow{\times} \mathbf{Set}$$

along the tensor product functor:

An element of the coend

$$G * F(t) = \int^{(s,r) \in \mathbb{D}_2} \mathbb{D}_1(s \diamond_h r, t) \times G(s) \times F(r)$$

consists of a double cell of the form

together with a pair of elements

 $y \in G(s)$ $x \in F(r)$

considered modulo an equivalence relation noted \sim .

We find enlightening to draw the triple

$$\left(s \diamond_h r \xrightarrow{\gamma} t , x \in F(r) , y \in G(s) \right)$$

in the following way:

This picture is the reason we like to speak of the rabbit calculus.

Suppose given a pair of elements

 $x \in F(r) \qquad \qquad y \in G(s)$

a pair of double cells

$$\alpha : r \Longrightarrow r' \qquad \beta : s \Longrightarrow s'$$

and a double cell

$$\gamma : s' \diamond_h r' \Longrightarrow t$$

The five components may be depicted as follows:

The equivalence relation \sim defined by the coend

$$G * F(t) = \int_{0}^{(s,r) \in \mathbb{D}_{2}} \mathbb{D}_{1}(s \diamond_{h} r, t) \times G(s) \times F(r)$$

identifies every triple of the form

Main structural theorem

Theorem [Behr, PAM, Zeilberger]

The convolution product

 $G, F \mapsto G * F$

on a double category ${\rm I\!D}$ defines a functor

 $* \quad : \quad \widehat{\mathbb{D}} \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}$

which equips the category of covariant presheaves

 $\widehat{\mathbb{D}}$:= $[\mathbb{D}_1, \mathbf{Set}]$

with the structure of an oplax monoidal closed category.

The category of covariant presheaves

 $\widehat{\mathbb{D}}$:= $[\mathbb{D}_1, \mathbf{Set}]$

comes equipped with a family of convolution products

$$*_n : \widehat{\mathbb{D}} \times \cdots \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}$$

where we use the notation

 $(F_n \ast \cdots \ast F_1) \quad := \quad \ast_n \ (F_n, \dots, F_1)$

for the n-ary product of n covariant presheaves

 F_n,\ldots,F_1 : $\mathbb{D}_1 \longrightarrow \mathbf{Set}$.

The ternary convolution product

Typically, the ternary convolution product

$$H * G * F : \mathbf{C} \longrightarrow \mathbf{Set}$$

of three covariant presheaves H, G, F is defined by the coend formula

$$H * G * F = u \mapsto \int^{(t,s,r) \in \mathbb{D}_3} \mathbb{D}_1(t \diamond_h s \diamond_h r, u) \times H(t) \times G(s) \times F(r)$$

where \mathbb{D}_3 is the category of horizontal paths of length 3.

The ternary convolution product

The elements of the ternary convolution product are quadruples

$$\left(\begin{array}{cccc}t\diamond_hs\diamond_hr \xrightarrow{\delta}u & , & x\in F(r) & , & y\in G(s) & , & z\in G(t)\end{array}\right)$$

which may be depicted in the following way:

The ternary convolution product

The elements of the convolution product

$$\left(\begin{array}{cccc}t\diamond_hs\diamond_hr \xrightarrow{\delta}u & , & x\in F(r) & , & y\in G(s) & , & z\in G(t)\end{array}\right)$$

are identified modulo the equivalence relation:

The convolution products are related by associativity maps such as

$$H * (G * F) \xleftarrow{assoc} (H * G * F) \xrightarrow{assoc} (H * G) * F$$

which are **not reversible** in general, for the following reason:

In a general double category D, not every composite shape of the form

defining an element of the presheaf H * (G * F) at instance $u : A \longrightarrow A'$

is equivalent modulo \sim in \mathbb{D} to a ternary shape of the form

defining an element of H * G * F at the same instance $u : A \longrightarrow A'$.

Sketch of the proof

Main argument of the proof

The category Cat/\mathbb{D}_1 inherits a monoidal structure

 $\circledast \quad : \quad \mathbf{Cat}/\mathbb{D}_1 \times \mathbf{Cat}/\mathbb{D}_1 \longrightarrow \mathbf{Cat}/\mathbb{D}_1$

computed by pullback using the double categorical structure of \mathbb{D} .

The convolution product

* : $DiscOpFib/\mathbb{D}_1 \times DiscOpFib/\mathbb{D}_1 \longrightarrow DiscOpFib/\mathbb{D}_1$

is the **oplax monoidal structure** obtained by transporting on $\widehat{\mathbb{D}} = [\mathbb{D}_1, \mathbf{Set}]$ the strong monoidal structure \circledast on $\mathbf{Cat}/\mathbb{D}_1$ along the adjunction

Cylindrical decomposition property

A sufficient condition to ensure strong associativity

We want to find a **sufficient condition** on a double category

 $(\mathbb{D}, h_n : \mathbb{D}_n \longrightarrow \mathbb{D}_1)$

ensuring that the **associativity maps** of the convolution product

$$H * (G * F) \xleftarrow{assoc} (H * G * F) \xrightarrow{assoc} (H * G) * F$$

are reversible.

In particular, this requires to show that every **composite shape**

defining an element of the presheaf H * (G * F) at instance $u : A \longrightarrow A'$

is equivalent modulo \sim in \mathbb{D} to a ternary shape of the form

defining an element of H * G * F at the same instance $u : A \longrightarrow A'$.

Suppose that every double cell of the form

factors in the following way:

In that case, one can rewrite the original composite shape

We then into the shape where the cell γ has been factored:

then into the equivalent shape using the equivalence relation \sim

then into the equal shape by vertical composition:

and finally in the ternary shape we were looking for:

Every double category \mathbb{D} comes equipped with a family of categories

$\operatorname{Cyl}_{\mathbb{D}}[n]$

called cylinder categories and defined in the following way:

 \triangleright the objects of $\mathbf{Cyl}_{\mathbb{D}}[n]$ are the tuples

 $\sigma = (s_n, \dots, s_1, s, \sigma : s_n \diamond_h \dots \diamond_h s_1 \Rightarrow s)$

defining a globular cell of the form

▷ given globular cells

$$\sigma = (s_n, \dots, s_1, s, \sigma : s_n \diamond_h \dots \diamond_h s_1 \Rightarrow s)$$

$$\tau = (t_n, \dots, t_1, t, \tau : t_n \diamond_h \dots \diamond_h t_1 \Rightarrow t)$$

the morphisms of $\mathbf{Cyl}_{\mathbb{D}}[n]$ of the form

$$(\varphi_n, \cdots, \varphi_1, \varphi) \quad : \quad \sigma \longrightarrow \tau$$

are tuples consisting of a map in \mathbb{D}_n

$$(\varphi_n,\ldots,\varphi_1)$$
 : $(s_n,\ldots,s_1) \Rightarrow (t_n,\ldots,t_1)$

and of a double cell

$$\varphi : s \Rightarrow t$$

such that the double cell $\varphi \circ \sigma$ depicted below

is equal to the double cell $\tau \circ (\varphi_n \diamond_h \dots \diamond_h \varphi_1)$ depicted below

The cylindrical decomposition property

Key observation: each composition functor

 $h_n : \mathbb{D}_n \longrightarrow \mathbb{D}_1$

of the double category \mathbb{D} factors as

 $\mathbb{D}_n \longrightarrow \operatorname{Cyl}_{\mathbb{D}}[n] \xrightarrow{\pi_n} \mathbb{D}_1$

Definition. A double category **D** satisfies

the *n*-cylindrical decomposition property (*n*-CDP)

when the functor

$$\operatorname{Cyl}_{\mathbb{D}}[n] \xrightarrow{\pi_n} \mathbb{D}_1$$

is an opfibration.

Main theorem

Theorem. [Behr,PAM,Zeilberger]

Suppose that a double category \mathbb{D} satisfies

the *n*-cylindrical decomposition property (*n*-CDP)

for all $n \in \mathbb{N}$.

In that case, the convolution product defines a functor

 $* \quad : \quad \widehat{\mathbb{D}} \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}$

which equips the category of covariant presheaves

 $\widehat{\mathbb{D}}$:= $[\mathbb{D}_1, \mathbf{Set}]$

with the structure of an strong monoidal closed category.

Main theorem

In particular, the associativity maps are **reversible** in that case:

Reversibility comes from the cylindrical decomposition property of D.

Illustrations

The theorem applies to the following situations:

- ▷ every **bicategory** $\mathbb{D} = \mathcal{W}$ satisfies *n*-CDP,
- ▷ every framed bicategory $\mathbb{D} = \mathcal{W}$ satisfies *n*-CDP for $n \ge 1$,
- ▷ the double category $\mathbb{D} = \mathbf{DPO}$ satisfies *n*-CDP for $n \ge 1$.

More generally, the theorem enables us to use the convolution product for a number of categorical graph rewriting frameworks.

Categorifying rule algebras

Composing representable presheaves by convolution

Categorification of rule algebras

One main ingredient of rule algebras is the following equation

$$\delta(r) \star \delta(s) = \sum_{\mu \in \mathcal{M}_r(s)} \delta(r_{\mu}s)$$

where

- \triangleright $\mathcal{M}_r(s)$ is the set of **admissible matches** of rule *r* into rule *s*
- $ightarrow r_{\mu}s$ denotes one possible way to get a **composite rule** from *r* and *s*.

Similarly, we want to find sufficient conditions on \mathbb{D} such that

$$\hat{\Delta}_{r} * \hat{\Delta}_{s} = \sum_{\mu \in \mathcal{M}_{r}(s)} \hat{\Delta}_{r_{\mu}s})$$

where the sum is now set-theoretic union.

Multi-sums

Suppose that *A* and *B* are objects in a category **C**.

Definition. A **multi-sum** of *A* and *B* is a family of cospans

$$(A \xrightarrow{a_i} U_i \xleftarrow{b_i} B)_{i \in I}$$

such that for any cospan

$$A \xrightarrow{f} X \xleftarrow{g} B$$

there exists a unique $i \in I$ and a unique morphism

$$[f,g] \quad : \quad U_i \stackrel{f}{\longrightarrow} X$$

such that

$$f = [f,g] \circ a_i$$
 and $g = [f,g] \circ b_i$

Categorification of rule algebras

Assume \mathbb{D} is a small double category satisfying

- \triangleright the vertical category \mathbb{D}_0 has multi-sums,
- ▷ the source and target functors $S, T : \mathbb{D}_1 \to \mathbb{D}_0$ are opfibrations.

In that case, the convolution product of two representable presheaves is isomorphic to the sum of representables

$$\hat{\Delta}_{r_2} * \hat{\Delta}_{r_1} \cong \sum_{i \in I} \hat{\Delta}_{r_2 \langle c_i \rangle \diamond_h \langle b_i \rangle r_1}$$

where the multi-sum of B and C is given by a family of cospans

$$(B \xrightarrow{b_i} U_i \xleftarrow{c_i} C)_{i \in I}$$

and where $r_2 \langle c_i \rangle$ denotes the *S*-pushforward of r_2 along c_i and $\langle b_i \rangle r_1$ denotes the *T*-pushforward of r_1 along b_i .

Thank you!

