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The quest for causality in rewriting theory

An important insight coming from Huet and Lévy:

In order to track the causality structure relating different β-redexes,
one needs to consider rewriting paths modulo permutations of the form

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a



The quest for causality in rewriting theory

In the λ-calculus and term rewriting systems

A tradition based on optimality and residual theory

B the notion of Lévy families in the λ-calculus (Lévy 1980)

B their generalisation to any CRS (Asperti, Laneve 1995)

B a residual theory based on the notion of trek (PAM, 2002)

More recently, in categorical graph rewriting

B the notion of tracelet emerging in the work by Nicolas Behr.

Our ambition in this work is to initiate a convergence between these lines
by revisiting/categorifying the work on tracelets using double categories.



Double categories

Definition. A (weak) double category D consists of

B a category D0 of objects,

B a category D1 of horizontal maps,

B a pair of source and target functors

D0 D1 D0
ST

B a horizontal composition functor

�h : D1 ×D0 D1 D1

B a horizontal identity functor

idh : D0 D1

satisfying a number of associativity and neutrality properties.



The category D0 of vertical maps

A morphism in the category D0 is represented as a vertical map

A

A′

a

which may be composed vertically with other vertical maps.



The category D1 of horizontal maps

An object in the category D1 is represented as a horizontal map

B Ar

A morphism in the category D1 is represented as a double cell

B A

B′ A′

b

r

a

r′

α

which may be composed vertically with other double cells.



The category D1 of horizontal maps

We often find convenient to use the pictorial notation

for the double cell usually noted

B A

B′ A′

b

r

a

r′

α



The category D2 of paths of length 2

Every double category D comes with

a category D2 = D1 ×D0 D1 of horizontal paths of length 2

defined as the limit of the diagram of functors

D2

D1 D1

D0 D0 D0

ST ST

in the category Cat of categories and functors.



The category D2 of paths of length 2

A typical morphism of D2 has the shape

C B A

C′ B′ A′

c

s

b

r

a

s′ r′

αβ

which we also like to depict as



The category D3 of paths of length 3

Every double category D comes with

a category D3 of horizontal paths of length 3

defined as the limit of the diagram of functors

D3

D1 D1 D1

D0 D0 D0 D0

ST ST ST

in the category Cat of categories and functors.



The category D3 of paths of length 3

A typical morphism of D3 has the shape

D C B A

D′ C′ B′ A′

d

t

c

s

b

r

a

t′ s′ r′

αβγ

which we also like to depict as



The category D4 of paths of length 4

Every double category D comes with

a category D4 of horizontal paths of length 4

defined as the limit of the diagram of functors

D4

D1 D1 D1 D1

D0 D0 D0 D0 D0

ST ST ST ST

in the category Cat of categories and functors.



The category D4 of paths of length 4

A typical morphism of D4 has the shape

E D C B A

E′ D′ C′ B′ A′

e d

u t

c

s

b

r

a

u′ t′ s′ r′

αβγδ

which we also like to depict as



Unbiased presentation of a double category

Every double category D comes equipped with a family of functors

hn : Dn D1

called the horizontal composition functors, and satisfying a number of
associativity and neutrality properties.

This leads to an alternative (unbiased) definition of (weak) double category.

Note that the functors h2 and h0 coincide with the functors �h and idh

h2 = �h : D2 D1

h0 = idh : D0 D1



The double category DPO of double pushouts

The double category D = DPO on an adhesive category C

B whose objects are objects A,B,C of the cohesive category C,

B whose horizontal maps M = (S, s, t) are spans in C,

B whose vertical maps λA : A→ A′ are monos in C,

B whose double cells θ : M⇒M′ are monos λθ : S→ S′

B making the pushout diagram commute:

B A

B′ A′

λB λA

|

M

|

M′

θ

B S A

B′ S′ A′

λB

t s

POPO λθ λA

t′ s′



Rewriting rules as covariant presheaves

A rewriting rule provided by a horizontal map

r : B A

is described in our framework as the representable presheaf

∆̂ r : D1 Set

which associates to every horizontal map

u : B′ A′

the set

D1(r,u)

of all possible implementations of the transformation u by the rule r.



Category of elements of a presheaf

The Grothendieck construction



Elements of a covariant presheaf

Recall that an element

(a, x) ∈ Elts (F)
of a covariant presheaf

F : C Set

is defined as a pair (
a ∈ C , x ∈ F(a)

)
consisting of

B an object a of the underlying category C,

B an element x of the set F(a).



Elements of a covariant presheaf

We find enlightening to draw such a pair(
a ∈ C , x ∈ F(a)

)
∈ Elts (F)

in the following way

F

a

x

with the intuition that the element

x ∈ F(a)

provides a witness of the covariant presheaf F at instance a ∈ C.



Covariant action of a presheaf

By definition of a covariant presheaf

F : C Set

every element (
a ∈ C , x ∈ F(a)

)
∈ Elts (F)

and morphism of the category C

γ : a a′

induces an element(
a′ ∈ C , γ · x = F(γ)(x) ∈ F(a′)

)
∈ Elts (F)



Covariant action of a presheaf

This means that every diagram

F

a a′

x

γ

can be completed into the diagram

F

a a′

x γ·x=F(γ)(x)

γ



The category of elements

The category Elts (F) of elements of a covariant presheaf

F : C Set

is defined in the following way:

B its objects are the elements (a, x) of the covariant presheaf F

B its morphisms

( f , x) : (a, x) (a′, x′)

B are the pairs consisting of a morphism

f : a a′

B of the category C and an element x ∈ F(a) such that

f · x = F( f )(x) = x′



The category of elements

The category of elements

Elts (F)

associated to a covariant presheaf
F : C Set

comes equipped with a projection functor

πF : Elts (F) C

which transports every element

(a, x) ∈ Elts (F)

to the object a ∈ C of the underlying category C.

Fact. The functor πF defines a discrete opfibration.



Grothendieck opfibrations

Definition. A functor

p : E C

is an opfibration when there exists an opcartesian morphism

R S
f

p

A Bu

for every object R ∈ p−1(A) and every morphism u : A→ B.



Opcartesian morphisms

A morphism f : R→ S in E is opcartesian above u : A→ B in C
when the following property holds:

for every map g : R→ T

for every map v : B→ C
such that p (g) = v ◦ u

there exists
a unique map h : S→ T
such that h ◦ f = g
and p (h) = v.

T

R S
f

g

h

p

C

A Bu

v



The Grothendieck correspondence

The projection functor

πF : Elts (F) C

is a discrete opfibration. Indeed, every diagram

x

a a′
πF

f

can be completed with the opcartesian morphism ( f , x ) as follows:

x f · x

a a′

πF

( f , x )∈Elts (F)

πF
f ∈C



The Grothendieck correspondence

Moreover, every natural transformation

C Set

F

G

θ

induces a commutative diagram of discrete opfibrations:

Elts (F) Elts (G)

C

Elts (θ)

πF πG



The Grothendieck correspondence

Fact. This induces a categorical equivalence between

B The category [C,Ens] of covariant presheaves

F,G : C Set

B and natural transformations between them.

B The slice category DiscOpFib/C of discrete opfibrations above C.

Moreover, there is an adjunction

Cat/C ⊥ DiscOpFib/C

Free

Inclusion



The Day convolution product

A construction on monoidal categories



The Day convolution product

Given two covariant presheaves

F,G : C Set

on a monoidal category C with tensor product

⊗ : C × C C

the Day convolution product of F and G is the covariant presheaf

G ⊗̂F : C Set

defined by the coend formula

G ⊗̂F = c 7→
∫ (b, a)∈C×C

C(b ⊗ a, c) × G(b) × F(a)



The Day convolution product

Equivalently, the convolution product

G ⊗̂F : C Set

may be defined as the left Kan extension of the functor

C × C Set × Set SetG×F ×

along the tensor product functor:

C × C Set × Set Set

C

G×F

⊗

×

G ⊗̂F



What does the coend formula mean?

An element of the coend

G ⊗̂F (c) =

∫ (b, a)∈C×C
C(b ⊗ a, c) × G(b) × F(a)

consists of a morphism

b ⊗ a c
γ

together with a pair of elements

y ∈ G(b) x ∈ F(a)

considered modulo an equivalence relation ∼.



What does the coend formula mean?

As we did before, we find enlightening to draw the two elements

y ∈ G(b) x ∈ F(a)

in the following way:

G F

b a

y x



What does the coend formula mean?

Accordingly, we like to draw the triple

(
b ⊗ a c

γ
, x ∈ F(a) , y ∈ G(b)

)
in the following way:

G F

b ⊗ a

c

y x

γ



What does the coend formula mean?

Suppose given a pair of elements

x ∈ F(a) y ∈ G(b)

a pair of morphisms

α : a a′ β : b b′

and a morphism

γ : a′ ⊗ b′ c



What does the coend formula mean?

The situation may be depicted as follows:

G F

b ⊗ a

b′ ⊗ a′

c

y x

β⊗α

m



What does the coend formula mean?

The diagram may be completed as follows:

G F

b ⊗ a

b′ ⊗ a′

c

y

β·y

x

α·x
β⊗α

γ



What does the coend formula mean?

This equivalence relation ∼ defined by the coend

G ⊗̂F (c) =

∫ (b, a)∈C×C
C(b ⊗ a, c) × G(b) × F(a)

identifies every triple of the form

(
b ⊗ a b′ ⊗ a′ c

β⊗α γ
, x ∈ F(a) , y ∈ G(b)

)
with the corresponding triple

(
b′ ⊗ a′ c

γ
, α · x ∈ F(a′) , β · y ∈ G(b′)

)



What does the coend formula mean?

Diagrammatically, the equivalence relation ∼ identifies the two triples:

G F

b ⊗ a

b′ ⊗ a′

c

y x

β⊗α

γ

∼

G F

b′ ⊗ a′

c

β·y α·x

γ



The Day convolution product

Theorem [Day 1970] The convolution product

G,F 7→ G ⊗̂ F

on a monoidal category C with tensor product ⊗ defines a functor

⊗̂ : [C,Set] × [C,Set] [C,Set]

which equips the category of covariant presheaves

[C,Set]

with the structure of a monoidal closed category.

In particular, the convolution product is associative:

H ⊗̂ ( G ⊗̂ F ) � ( H ⊗̂ G ) ⊗̂ F



A key observation

Fact. The projection functor

πG ⊗̂F : Elts (G ⊗̂F) C

associated to the Day convolution product

G ⊗̂F : C Set

is the free discrete opfibration associated to the functor

Elts (G) × Elts (F) C × C C
πG×πF ⊗

obtained by tensoring the two projection functors

Elts (G) C
πG Elts (F) C

πF



Construction of the free discrete opfibration

Step 0. We start from the functor

Elts (G) × Elts (F) C × C C
πG×πF ⊗

whose objects in the source category are pairs(
x ∈ F(a) , y ∈ G(b)

)
may be depicted in the following way:

G F

b ⊗ a

y x



Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

Elts (G,F) C
πG,F

where the source category Elts (G,F) has objects defined as triples(
b ⊗ a c

γ
, x ∈ F(a) , y ∈ G(b)

)
which may be depicted in the following way:

G F

b ⊗ a

c

y x

γ



Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

Elts (G,F) C
πG,F

whose morphisms in each fiber above c ∈ C are of the form:

G F

b ⊗ a

b′ ⊗ a′

c

y x

β⊗α

γ

−→

G F

b′ ⊗ a′

c

β·y α·x

γ



Construction of the free discrete opfibration

Step 2. Replace each fiber category of the opfibration

Elts (G,F) C
πG,F

by its set of connected components, using the equivalence relation:

G F

b ⊗ a

b′ ⊗ a′

c

y x

β⊗α

γ

∼

G F

b′ ⊗ a′

c

β·y α·x

γ



A key observation

From this follows that there exists a cofinal functor

Elts (G) × Elts (F) Elts (G ⊗̂F)

making the diagram commute:

Elts (G) × Elts (F) Elts (G ⊗̂F)

C

cofinal

⊗◦ (πG×πF) πG ⊗̂F

in the category Cat of categories and functors.



A key observation

The category Cat/C inherits a tensor product

⊗̃ : Cat/C × Cat/C Cat/C

from the monoidal structure of the category C.

The Day tensor product

⊗̂ : DiscOpFib/C ×DiscOpFib/C DiscOpFib/C

is the monoidal structure obtained by transporting ⊗̃ along the adjunction

Cat/C ⊥ DiscOpFib/C

Free

Inclusion



The convolution product on double categories

Extending the Day construction



The convolution product on double categories

Given two covariant presheaves

F,G : D1 Set

on a double category D with horizontal composition

�h : D2 = D1 ×D0 D1 D1

the convolution product of F and G is the covariant presheaf

G ∗ F : D1 Set

defined by the coend formula:

G ∗ F = t 7→
∫ (s, r)∈D2

D1(s �h r, t) × G(s) × F(r)



The convolution product

Equivalently, the convolution product

G ∗ F : D1 Set

may be defined as the left Kan extension of the functor

D1 ×D0 D1 D1 ×D1 Set × Set Set
proj G×F ×

along the tensor product functor:

D1 ×D0 D1 D1 ×D1 Set × Set Set

D1

proj

�h

G×F ×

ψ ∗ϕ



What does the coend formula mean?

An element of the coend

G ∗ F (t) =

∫ (s, r)∈D2
D1(s �h r, t) × G(s) × F(r)

consists of a double cell of the form

B C A

B′ A′

g

s

f

r

t

γ

together with a pair of elements

y ∈ G(s) x ∈ F(r)

considered modulo an equivalence relation noted ∼.



What does the coend formula mean?

We find enlightening to draw the triple(
s �h r t

γ
, x ∈ F(r) , y ∈ G(s)

)
in the following way:

This picture is the reason we like to speak of the rabbit calculus.



What does the coend formula mean?

Suppose given a pair of elements

x ∈ F(r) y ∈ G(s)

a pair of double cells

α : r r′ β : s s′

and a double cell

γ : s′ �h r′ t



What does the coend formula mean?

The five components may be depicted as follows:



What does the coend formula mean?

The equivalence relation ∼ defined by the coend

G ∗ F (t) =

∫ (s, r)∈D2
D1(s �h r, t) × G(s) × F(r)

identifies every triple of the form



Main structural theorem

Theorem [Behr, PAM, Zeilberger]

The convolution product

G,F 7→ G ∗ F

on a double category D defines a functor

∗ : D̂ × D̂ D̂

which equips the category of covariant presheaves

D̂ := [D1,Set]

with the structure of an oplax monoidal closed category.



What oplax monoidal means...

The category of covariant presheaves

D̂ := [D1,Set]

comes equipped with a family of convolution products

∗n : D̂ × · · · × D̂ D̂

where we use the notation

(Fn ∗ · · · ∗ F1) := ∗n (Fn, . . . ,F1)

for the n-ary product of n covariant presheaves

Fn, . . . ,F1 : D1 Set.



The ternary convolution product

Typically, the ternary convolution product

H ∗ G ∗ F : C Set

of three covariant presheaves H,G,F is defined by the coend formula

H ∗ G ∗ F = u 7→
∫ ( t, s, r)∈D3 D1(t �h s �h r,u) ×H(t) × G(s) × F(r)

where D3 is the category of horizontal paths of length 3.



The ternary convolution product

The elements of the ternary convolution product are quadruples(
t �h s �h r uδ , x ∈ F(r) , y ∈ G(s) , z ∈ G(t)

)
which may be depicted in the following way:



The ternary convolution product

The elements of the convolution product(
t �h s �h r uδ , x ∈ F(r) , y ∈ G(s) , z ∈ G(t)

)
are identified modulo the equivalence relation:



What oplax monoidal means...

The convolution products are related by associativity maps such as

H ∗ ( G ∗ F ) ( H ∗ G ∗ F ) ( H ∗ G ) ∗ Fassoc assoc

which are not reversible in general, for the following reason:



What oplax monoidal means...

In a general double category D, not every composite shape of the form

defining an element of the presheaf H ∗ (G ∗ F) at instance u : A −→ A′



What oplax monoidal means...

is equivalent modulo ∼ in D to a ternary shape of the form

defining an element of H ∗ G ∗ F at the same instance u : A −→ A′.



Sketch of the proof

Key observation. The projection functor

πG∗F : Elts (G ∗ F) D1

associated to the binary convolution product

G ∗ F : D1 Set

is the free discrete opfibration associated to the functor

Elts (G) ~ Elts (F) = Elts (G) ×D0 Elts (F) D2 D1
πG~πF h2

obtained by composing the two projection functors above D1

Elts (G) D1
πG Elts (F) D1

πF



Sketch of the proof

Elts (G) Elts (F)

D1 D1

D0 D0 D0

πG πF

ST ST



Sketch of the proof

Elts (G) ~ Elts (F)

Elts (G) Elts (F)

D1 D1

D0 D0 D0

πG πF

ST ST



Sketch of the proof

Elts (G) ~ Elts (F)

Elts (G) Elts (F)

D2

D1 D1

D0 D0 D0

πG~πF

πG πF
ST

ST ST



Sketch of the proof

Elts (G) ~ Elts (F)

Elts (G) Elts (F)

D2

D1 D1

D0 D1 D0

πG~πF

πG πF
ST

h2
T S

ST



Sketch of the proof

Similarly, the projection functor

πH∗G∗F : Elts (H ∗ G ∗ F) D1

associated to the ternary convolution product

H ∗ G ∗ F : D1 Set

is the free discrete opfibration associated to the functor

Elts (H) ~ Elts (G) ~ Elts (F) D3 D1
πH~πG~πF h3

obtained by composing the three projection functors above D1

Elts (H) D1
πH Elts (G) D1

πG Elts (F) D1
πF



Sketch of the proof

Elts (H) Elts (G) Elts (F)

D1 D1 D1

D0 D0 D0 D0

πH πG πF

ST ST ST



Sketch of the proof

Elts (H) ~ Elts (G) ~ Elts (F)

Elts (H) Elts (G) Elts (F)

D1 D1 D1

D0 D0 D0 D0

πH πG πF

ST ST ST



Sketch of the proof

Elts (H) ~ Elts (G) ~ Elts (F)

D3

D1 D1 D1

D0 D0 D0 D0

πH~πG~πF

ST ST ST



Sketch of the proof

Elts (H) ~ Elts (G) ~ Elts (F)

D3

D1 D1

D0 D1 D0

πH~πGπF

h3

T S

ST



Main argument of the proof

The category Cat/D1 inherits a monoidal structure

~ : Cat/D1 × Cat/D1 Cat/D1

computed by pullback using the double categorical structure of D.

The convolution product

∗ : DiscOpFib/D1 ×DiscOpFib/D1 DiscOpFib/D1

is the oplax monoidal structure obtained by transporting on D̂ = [D1,Set]
the strong monoidal structure ~ on Cat/D1 along the adjunction

Cat/D1 ⊥ DiscOpFib/D1

Free

Inclusion



Cylindrical decomposition property

A sufficient condition to ensure strong associativity



Towards strong associativity

We want to find a sufficient condition on a double category

(D , hn : Dn −→ D1 )

ensuring that the associativity maps of the convolution product

H ∗ ( G ∗ F ) ( H ∗ G ∗ F ) ( H ∗ G ) ∗ Fassoc assoc

are reversible.



Towards strong associativity

In particular, this requires to show that every composite shape

defining an element of the presheaf H ∗ (G ∗ F) at instance u : A −→ A′



Towards strong associativity

is equivalent modulo ∼ in D to a ternary shape of the form

defining an element of H ∗ G ∗ F at the same instance u : A −→ A′.



Towards strong associativity

Suppose that every double cell of the form

factors in the following way:



Towards strong associativity

In that case, one can rewrite the original composite shape



Towards strong associativity

We then into the shape where the cell γ has been factored:



Towards strong associativity

then into the equivalent shape using the equivalence relation ∼



Towards strong associativity

then into the equal shape by vertical composition:



Towards strong associativity

and finally in the ternary shape we were looking for:



The cylinder categories

Every double category D comes equipped with a family of categories

CylD [n]

called cylinder categories and defined in the following way:

B the objects of CylD [n] are the tuples

σ = ( sn , . . . , s1 , s , σ : sn �h · · · �h s1 ⇒ s )

B defining a globular cell of the form

An An−1 · · · A4 A3 A2 A1

An A1

id

sn s3 s2 s1

id

s

σ



The cylinder categories

B given globular cells

σ = ( sn , . . . , s1 , s , σ : sn �h · · · �h s1 ⇒ s )

τ = ( tn , . . . , t1 , t , τ : tn �h · · · �h t1 ⇒ t )

B the morphisms of CylD [n] of the form

(ϕn, · · · , ϕ1, ϕ) : σ τ

B are tuples consisting of a map in Dn

(ϕn, . . . , ϕ1) : ( sn , . . . , s1 )⇒ ( tn , . . . , t1 )

B and of a double cell

ϕ : s⇒ t



The cylinder categories

such that the double cell ϕ ◦ σ depicted below

An An−1 · · · A3 A2 A1 A0

An A0

Bn B0

id

sn s3 s2 s1

id

an a0

s

t

σ

ϕ



The cylinder categories

is equal to the double cell τ ◦ (ϕn �h . . . �h ϕ1) depicted below

An An−1 · · · A3 A2 A1 A0

Bn Bn−1 · · · B3 B2 B1 B0

Bn B0

an

sn

an−1 a3

s3

a2

s2

a1

s1

a0

id

tn t3 t2

id

t1

t

ϕ1ϕ2ϕ3ϕn

τ



The cylindrical decomposition property

Key observation: each composition functor

hn : Dn D1

of the double category D factors as

Dn CylD [n] D1
πn

Definition. A double category D satisfies

the n-cylindrical decomposition property (n-CDP)

when the functor

CylD [n] D1
πn

is an opfibration.



Main theorem

Theorem. [Behr,PAM,Zeilberger]

Suppose that a double category D satisfies

the n-cylindrical decomposition property (n-CDP)

for all n ∈N.

In that case, the convolution product defines a functor

∗ : D̂ × D̂ D̂

which equips the category of covariant presheaves

D̂ := [D1,Set]

with the structure of an strong monoidal closed category.



Main theorem

In particular, the associativity maps are reversible in that case:

H ∗ ( G ∗ F ) ( H ∗ G ∗ F ) ( H ∗ G ) ∗ Fassoc assoc

Reversibility comes from the cylindrical decomposition property of D.



IIllustrations

The theorem applies to the following situations:

B every bicategory D =W satisfies n-CDP,

B every framed bicategory D =W satisfies n-CDP for n ≥ 1,

B the double category D = DPO satisfies n-CDP for n ≥ 1.

More generally, the theorem enables us to use the convolution product
for a number of categorical graph rewriting frameworks.



Categorifying rule algebras

Composing representable presheaves by convolution



Categorification of rule algebras

One main ingredient of rule algebras is the following equation

δ(r) ? δ(s) =
∑

µ∈Mr(s)

δ(rµs)

where

B Mr(s) is the set of admissible matches of rule r into rule s

B rµs denotes one possible way to get a composite rule from r and s.

Similarly, we want to find sufficient conditions on D such that

∆̂ r ∗ ∆̂ s =
∑

µ∈Mr(s)

∆̂ rµs)

where the sum is now set-theoretic union.



Multi-sums

Suppose that A and B are objects in a category C.

Definition. A multi-sum of A and B is a family of cospans

( A Ui B )i∈I
ai bi

such that for any cospan

A X B
f g

there exists a unique i ∈ I and a unique morphism

[ f , g] : Ui X
f

such that

f = [ f , g] ◦ ai and g = [ f , g] ◦ bi.



Categorification of rule algebras
Assume D is a small double category satisfying
B the vertical category D0 has multi-sums,
B the source and target functors S,T : D1→ D0 are opfibrations.
In that case, the convolution product of two representable presheaves is
isomorphic to the sum of representables

∆̂ r2 ∗ ∆̂ r1 �
∑
i∈I

∆̂ r2〈ci〉�h〈bi〉r1

where the multi-sum of B and C is given by a family of cospans

( B Ui C )i∈I
bi ci

and where r2〈ci〉 denotes the S-pushforward of r2 along ci
and 〈bi〉r1 denotes the T-pushforward of r1 along bi.



Thank you!
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