Poset homology and operads

Bérénice Delcroix-Oger
joint work with Clément Dupont (IMAG)

Journées du GT LHC
Mercredi 7 juin 2022, IRIF
Goal for today

Understand the following relation:

\[H^{n-3}(\Pi_n) = \Sigma \text{Lie} \quad (H^{n-3}(HT_n) = \Sigma \text{Lie}) \]

Outline

1. Posets and chain complexes
2. Species and operads
3. Hypertree posets and postLie operad
Posets and chain complexes
First poset (partially ordered set): Boolean poset (or lattice)

Consider the set of subsets of a set V, with the partial order given by inclusion of subsets:

$$A \leq B \iff A \subseteq B$$

```plaintext
\[
\begin{array}{c}
\{1, 2, 3\} \\
\{1, 2\} \quad \{1, 3\} \quad \{2, 3\} \\
\{1\} \quad \{2\} \quad \{3\} \\
\emptyset
\end{array}
\]```
Posets of (set) partitions $\Pi_V$

Partitions of a set $V$:

$$\{V_1, \ldots, V_k\} \models V \iff V = \bigsqcup_{i=1}^{k} V_i, V_i \cap V_j = \emptyset \text{ for } i \neq j$$

Partial order on set partitions of a set $V$:

$$\{V_1, \ldots, V_k\} \leq \{V_1', \ldots, V_p'\} \iff \forall i \in \{1, p\}, \exists j \in \{1, k\} \text{ s.t. } V_i' \subseteq V_j$$
Poset cohomology

To any bounded poset $P$ can be associated its order complex (nerve), a simplicial set whose simplices are the $k$-chains $a_0 < \ldots < a_k$ in $P \setminus \{\hat{0}, \hat{1}\}$. The (co)homology of $P$ is the cohomology of its order complex.
(Co)homology of a poset

Let $P$ be a poset.

$C_j(P) = \mathbb{C}$-vector space of $j$-chains $x_0 < x_1 < \ldots < x_j$ of $P - \{\hat{0}_P, \hat{1}_P\}$, with $C_{-1}(P) = \mathbb{C}.e$
(Co)homology of a poset

Let $P$ be a poset.

$C_j(P) = \mathbb{C}$-vector space of $j$-chains $x_0 < x_1 < \ldots < x_j$ of $P - \{\hat{0}_P, \hat{1}_P\}$, with $C_{-1}(P) = \mathbb{C}.e$

For $j \geq 0$, let us define the differential $\partial_j : C_j(P) \rightarrow C_{j+1}(P)$ by:

$$\partial(x_0 < \ldots < x_j) = \sum_{i=1}^{j+1} \sum_{x_{i-1} < x < x_i} (-1)^i (x_0 < \ldots < x_{i-1} < x < x_i < \ldots < x_j).$$

We have $\partial_j \partial_{j-1} = 0$: $(C_j, \partial_j)$ is a chain complex.
(Co)homology of a poset

Let $P$ be a poset.

$C_j(P) = \mathbb{C}$-vector space of $j$-chains $x_0 < x_1 < \ldots < x_j$ of $P - \{\hat{0}_P, \hat{1}_P\}$, with $C_{-1}(P) = \mathbb{C}$.e

For $j \geq 0$, let us define the differential $\partial_j : C_j(P) \to C_{j+1}(P)$ by:

$$
\partial(x_0 < \ldots < x_j) = \sum_{i=1}^{j+1} \sum_{x_{i-1} < x < x_i} (-1)^i (x_0 < \ldots < x_{i-1} < x < x_i < \ldots < x_j).
$$

We have $\partial_j \partial_{j-1} = 0$: $(C_j, \partial_j)$ is a chain complex.
The $j$th cohomology group is then defined, for any $j \geq 0$, by:

$$
\tilde{H}^j(P) = \ker \partial_j / \text{im} \partial_{j-1}.
$$
What about unbounded posets?

→ Add bounds to delete them!
What about unbounded posets?

Add bounds to delete them!

Another definition for the cohomology

\[ c^k = \mathbb{C}. \{ a_0 < \ldots < a_k | a_0 \text{ minimal and } a_k \text{ maximal} \} \]

In particular, if \( P \) is bounded,

\[ h^n(P) \cong \tilde{H}^{n-2}(P \setminus \{ \hat{0}, \hat{1} \}) . \]
Cohen-Macaulay posets

Theorem (Björner, 1980)

The partition poset $\Pi_n$ is Cohen-Macaulay (even EL-shellable): all its cohomology groups vanish but its top one.

→ In this case, the Möbius number gives, up to a sign, the dimension of the unique non trivial cohomology group.

Hence

$$\dim \left( \tilde{H}^{n-3}(\Pi_n) \right) = (n - 1)!$$
Cohen-Macaulay posets

Theorem (Björner, 1980)

The partition poset $\Pi_n$ is Cohen-Macaulay (even EL-shellable): all its cohomology groups vanish but its top one.

→ In this case, the Möbius number gives, up to a sign, the dimension of the unique non trivial cohomology group.

Hence

$$\dim \left( \tilde{H}^{n-3}(\Pi_n) \right) = (n - 1)!$$

Spoiler:

That’s the dimension of the vector space Lie$(n)$!
Species and operads
What are species?

**Definition (Joyal, 80s)**

A species $F$ is a functor from $\text{Bij}$ to $\text{Vect}$. To a finite set $S$, the species $F$ associates a vector space $F(S)$ independent from the nature of $S$.

Species = Construction plan, such that the vector space obtained is invariant by relabeling.
Examples of species

- $\mathbb{C}.\{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}$ (Species of lists $\mathbb{L}$ on $\{1, 2, 3\}$)
- $\mathbb{C}.\{\{1, 2, 3\}\}$ (Species of non-empty sets $\mathbb{E}^+$)
- $\mathbb{C}.\{\{1\}, \{2\}, \{3\}\}$ (Species of pointed sets $\mathbb{E}^*$)

$\mathbb{C}.\{\begin{array}{c} 2 \ 3 \ 2 \\ 1 \ 1 \ 1 \end{array} \begin{array}{c} 3 \ 1 \ 3 \\ 2 \ 2 \ 2 \end{array} \begin{array}{c} 3 \ 1 \ 3 \\ 1 \ 2 \ 2 \end{array} \begin{array}{c} 2 \ 1 \ 2 \\ 2 \ 3 \ 3 \end{array} \begin{array}{c} 1 \ 1 \ 1 \\ 3 \ 2 \ 3 \end{array} \}

(Species of Cayley trees $\mathbb{T}$)

$\mathbb{C}.\{\begin{array}{c} 3 \ 2 \\ 1 \ 1 \end{array} \begin{array}{c} 2 \ 2 \\ 1 \ 1 \end{array} \}

(Species of cycles)

These sets are the image by species of the set $\{1, 2, 3\}$. 
Examples of species

- \( C.\{(\heartsuit, \spadesuit, \clubsuit), (\heartsuit, \spadesuit, \spadesuit), (\spadesuit, \heartsuit, \clubsuit), (\spadesuit, \spadesuit, \heartsuit), (\spadesuit, \spadesuit, \spadesuit), (\clubsuit, \heartsuit, \spadesuit), (\clubsuit, \spadesuit, \heartsuit)\} \) (Species of lists \( \mathbb{L} \) on \( \{\spadesuit, \heartsuit, \spadesuit\} \))

- \( C.\{\{\heartsuit\}, \{\spadesuit\}, \{\clubsuit\}\} \) (Species of non-empty sets \( \mathbb{E}^+ \))

- \( C.\{\{\heartsuit\}, \{\spadesuit\}, \{\clubsuit\}\} \) (Species of pointed sets \( \mathbb{E}^* \))

- Cayley trees \( \mathbb{T} \)

- \( C.\{\} \) (Species of cycles)

These sets are the image by species of the set \( \{\spadesuit, \heartsuit, \spadesuit\} \).
**Substitution of species**

**Proposition**

Let $F$ and $G$ be two species. Let us define:

$$(F \circ G)(S) = \bigoplus_{\pi \in \Pi(S)} F(\pi) \otimes \bigotimes_{J \in \pi} G(J),$$

where $\Pi(S)$ runs on the set of partitions of $S$.

$T \circ T([5]) =$

\[
\begin{array}{c}
\{(4, 5), \{2, 3, 1\}\}, \\
\{5, 4\}, \\
\{2, 3\}, \\
\{1\}, \\
\{2\}, \\
\{5\}, \\
\{1\}, \\
\{3\}, \\
\{4\}, \ldots
\end{array}
\]
Operads

A (symmetric) operad $\mathcal{O}$ is
- a species $\mathcal{O}$ with an associative composition
  \[ \gamma : \mathcal{O} \circ \mathcal{O} \to \mathcal{O} \]
- and a unit $i : I \to \mathcal{O}$, where $I$ is the singleton species ($I(S) = \delta_{|S|=1} \mathbb{C}$).
- To each kind of algebra is associated an operad.
Operads

A (symmetric) operad $\mathcal{O}$ is

- a species $\mathcal{O}$ with an associative composition

$$\gamma : \mathcal{O} \circ \mathcal{O} \to \mathcal{O}$$

- and a unit $i : I \to \mathcal{O}$, where $I$ is the singleton species ($I(S) = \delta_{|S|=1}\mathbb{C}$).

- To each kind of algebra is associated an operad.
Free operad

Let $M$ be $\mathcal{G}$-module. The **free operad** over $M$ is the operad whose underlying species associate to any finite set $V$ the set of rooted trees whose leaves are labelled by $V$ and whose inner vertices are labelled by an element of $M$, with substitution given by grafting on leaves.

Mag operad

When $M = \mathbb{C}.\{(1, 2), (2, 1)\}$, the free operad is called **Magmatic operad**. The species $\text{Mag}(V)$ is the species of planar binary trees with leaves labelled by $V$.

Any operad can be described as a quotient of a free operad.
Lie operad

Lie operad encodes Lie algebra. Its underlying vector space is obtained as a quotient of the Magmatic operad’s vector spaces with the Jacobi relations

\[ \begin{array}{c}
1 \\
\downarrow \\
\end{array} + \begin{array}{c}
1 \\
\downarrow \\
\end{array} + \begin{array}{c}
1 \\
\downarrow \\
\end{array} = 0 \]

and the anti-symmetry

\[ \begin{array}{c}
1 \\
\downarrow \\
\end{array} = - \begin{array}{c}
2 \\
\downarrow \\
\end{array} \]

Proposition

The vector space of n-ary operations of Lie operad has dimension Lie(n) = (n − 1)! (comb).
The underlying vector space \( \text{PostLie}(V) \) of post-Lie operad is spanned by Lie brackets of planar trees with nodes labeled by \( V \). The substitution of a tree \( t \) inside a node \( v \) is given by the sum over all the way to graft each child of \( v \) to the right of a node of \( t \) (planar pre-Lie product).

**Proposition**

The vector space of \( n \)-ary operations of Post-Lie operad has dimension \( \text{Post-Lie}(n) = \frac{(2n-1)!}{n!} \).
Back to the partition posets and Lie operad

\[ C_j(\Pi_n) = \mathbb{C}\{\hat{\Pi}_n = \pi_{-1} < \ldots < \pi_{j+1} = \hat{1}_{\Pi_n}|\forall l \in \Pi_n, \forall i \in \{1, j+1\} \}

Example: leveled cobar construction

Theorem (Fresse, 04)

The action of the symmetric group on the cohomology of the partition posets \( \Pi_n \) is given by

\[ \tilde{H}_{n-1}(\Pi_n) = \text{Lie}(n)^\vee \otimes \text{sgn}_n \]

where \( \text{Lie}(n)^\vee \) is the dual module of Lie.
To nested sets

**Problem**
There are no operadic structure on the leveled cobar construction, but there is one on the cobar construction!

**Solution:**
Forget about the levels!

This is what we obtain when we consider nested sets instead of chains!
Building sets and nested sets [De Concini–Procesi, 95; Feichtner–Müller, 05]

Consider $\mathcal{L}$ a finite join-semilattice (any nonempty subset has a least upper bound). For any $S \subseteq \mathcal{L}$ and $x \in \mathcal{L}$, we write

$$S \geq x = \{y \in S | y \geq x\}.$$ 

**Definition**

A **building set** is a subset $\mathcal{G}$ in $\mathcal{L}_{<\hat{1}}$ such that for any $x \in \mathcal{L}_{<\hat{1}}$ and $\max \mathcal{G} \geq x = \{g_1, \ldots, g_k\}$, there is an isomorphism of posets

$$[x, \hat{1}] \simeq \prod_{i=1}^{k} [g_i, \hat{1}].$$

A **nested set** is a subset $S$ of $\mathcal{G}$ such that for any set of incomparable elements $x_1, \ldots, x_t$ in $S$ ($t \geq 2$), the set $\{x_1, \ldots, x_t\}$ has a greatest lower bound (meet) which does not belong to $\mathcal{G}$.
Topological result

The $\mathcal{G}$-nested sets form an abstract simplicial complex, called the \textit{nested set complex}.

**Proposition (Feichtner–Müller, 05)**

Consider a join-semilattice $\mathcal{L}$ and an associated building set $\mathcal{G}$. The \textit{associated nested set complex is homotopy equivalent to the order complex of the poset}.

**For partition posets**

The cobar resolution (for the Commutative operad) corresponds to the cochain complex of the nested set complex associated with the minimal building set.
Hypertree posets and postLie operad
Hypergraphs

Definition (Berge)

A hypergraph (on a set $V$) is an ordered pair $(V, E)$ where:

- $V$ is a finite set (vertices)
- $E$ is a collection of subsets of cardinality at least two of elements of $V$ (edges).

Example of a hypergraph on $[1; 7]$
Hypertrees

Definition

A hypertree is a non-empty hypergraph $H$ such that, given any distinct vertices $v$ and $w$ in $H$,

- there exists a walk from $v$ to $w$ in $H$ with distinct edges $e_i$, ($H$ is connected),
- and this walk is unique, ($H$ has no cycles).

Example of a hypertree
The hypertree poset

**Definition**

Let \( I \) be a finite set of cardinality \( n \), \( S \) and \( T \) be two hypertrees on \( I \).

\[ S \leq T \iff \text{Each edge of } S \text{ is the union of edges of } T \]

We write \( S < T \) if \( S \leq T \) but \( S \neq T \).
Euler characteristic of the hypertree posets

Proposition (McCammond-Meier, 2004)

The dimension of the top cohomology group of $\widehat{HT}_n$ is given by:

$$\dim \left( H^{n-2}(\widehat{HT}_n) \right) = (-1)^{n-1}(n-1)^{n-2}$$

Proposition

The dimension of the top cohomology group of $HT_n$ is given by:

$$\dim \left( H^{n-2}(HT_n) \right) = (-1)^n \frac{(2n-3)!}{(n-1)!}$$
\[ \frac{(2n-3)!}{(n-1)!} \]

A006963  Number of planar embedded labeled trees with \( n \) nodes: \( (2n-3)!/(n-1)! \) for \( n \geq 2 \), \( a(1) = 1 \).
(Formerly M3076)

1, 1, 3, 20, 210, 3024, 55440, 1235520, 32432400, 980179200, 335221286400, 12799358208000, 53970627110400, 2490952020480000, 1249034513126400000, 67614401643909120000, 393008709555221760000, 244127763111949516800000, 1613955767240110694400000 (list; graph; refs; listen; history; text; internal format)

OFFSET 1,3

COMMENTS
For \( n>1 \): central terms of the triangle in A173333; cf. A001761, A001813. - Reinhard Zumkeller, Feb 19 2010

Can be obtained from the Vandermonde permanent of the first \( n \) positive integers; see A093883. - Clark Kimberling, Jan 02 2012

All trees can be embedded in the plane, but "planar embedded" means that orientation matters but rotation doesn't. For example, the \( n \)-star with \( n-1 \) edges has \( n! \) ways to label it, but rotation removes a factor of \( n-1 \). Another example, the \( n \)-path has \( n! \) ways to label it, but rotation removes a factor of 2. - Michael Somos, Aug 19 2014

REFERENCES

LINKS
Vincenzo Librandi, Table of a(n) for n = 1..200
David Callan, A quick count of plane (or planar embedded) labeled trees.
Maximal intervals in $HT_n$ are join-semilattices

**Lemma**

The cartesian product of join-semilattices is a join-semilattice.

**Lemma**

$$HT^a_n = \prod_{v \in V(a)} \Pi_{\deg(v)}$$

**Proposition**

Every maximal interval $HT^a_n$ in the hypertree posets is a join-semilattice.
The nested set complex of hypertrees

The nested sets of hypertrees are the following combinatorial objects:

**Definition**

A merge tree is a pair \((T, \tau)\) of trees such that

- \(T\) is a (non planar) rooted reduced (no vertex of valency 2) tree with leaves labeled by \(\{1, \ldots, n\}\)
- \(\tau\) is a (non planar oriented) tree whose vertices are labeled by \(\{0, \ldots, n\}\) and whose root is 0
- for any internal vertex \(s\) in \(T\), the restriction of \(\tau\) to edges leaving the leaves above \(s\) is connected
The operadic composition of a bitree $b$ in a node $v$ is as follows:

- the blue children of $v$ are grafted to some nodes in $b$ (pre-Lie composition)
- the bottom tree of $b$ is grafted at the place of the leaf $v$ (usual magmatic composition)
Operadic structure on the cohomology of the nested set complex (aka. post-Lie !)

Let us consider the map

\[
\text{Post-Lie} \xrightarrow{\phi} H^\bullet(HT_\bullet)
\]

Theorem (DO–Dupont, 22+)

The map \( \phi \) is an operad morphism. The cohomology of the hypertree poset can be endowed with an operadic structure. It is then isomorphic to the suspension of post-Lie operad.
Where does the idea of the composition come from?

Let us consider the map \( a : HT_n^0 \to \Pi_n \). We define

\[
(HT)_{\leq \pi} := a^{-1}(\Pi_{\leq \pi}) \quad \text{and} \quad (HT)_{\geq \pi} := a^{-1}(\Pi_{\geq \pi}).
\]

Define the maps

\[
\varphi : (HT)_{\leq \pi} \to HT(\pi)
\]

and

\[
\psi : (HT)_{\geq \pi} \to \prod_{t \in \pi} HT(t)
\]

obtained respectively by contracting parts of \( \pi \) to an element and splitting the hypertree according to the parts of \( \pi \).

The idea is to use these maps to define a composition:

\[
C^* (HT(\pi)) \otimes \bigotimes_{T \in \pi} C^* (HT(T)) \simeq C^* (HT(\pi)) \otimes C^* \left( \prod_{T \in \pi} HT(T) \right)
\]

\[
\phi^* \otimes \psi^* \quad \rightarrow \quad C^* (HT_{\leq \pi}) \otimes C^* (HT_{\geq \pi}) \rightarrow C^* (HT_n)
\]
Finally

**Other results proven and to come**

- We obtained an operad on the nested sets which is a model of (the suspension of) postLie.

- By considering chains from the minimal element to anywhere, we prove that preLie operad as a left post-lie module structure.

  \[
  1 \triangleleft T = 1 \searrow T, \\
  (G \searrow D) \triangleleft T = (G \triangleleft T) \searrow D + G \searrow (D \triangleleft T) \\
  \{S, T\} = T \searrow S - S \searrow T,
  \]

  where \( \searrow \) is the usual pre-Lie product.

- The construction of last slide can be applied to many other examples: bidecorated partition posets, bidecorated hypertree posets, ...
Finally

Other results proven and to come

- We obtained an operad on the nested sets which is a model of (the suspension of) postLie.
- By considering chains from the minimal element to anywhere, we prove that preLie operad as a left post-lie module structure.

\[
1 \triangleleft T = 1 \triangleleft T,
\]
\[
(G \triangleleft D) \triangleleft T = (G \triangleleft T) \triangleleft D + G \triangleleft (D \triangleleft T)
\]
\[
\{S, T\} = T \triangleleft S - S \triangleleft T,
\]

where $\triangleleft$ is the usual pre-Lie product.

- The construction of last slide can be applied to many other examples: bidecorated partition posets, bidecorated hypertree posets, ...