
How algorithmic checkability
determines the syntax of formal proofs

Alain Prouté*

June 11, 2023

Abstract

I present a method for discovering (or rediscovering) the structure of formal mathe-
matical proofs, whithout assuming any a priori syntactic form for proofs. The key point
is that the algorithmic checkability of proofs essentially determines their very syntax.

Contents
1 Introduction 1
2 Preliminaries 4
3 Phaneroalethicity 5
4 Characterization of formal proofs 5
5 Logical connectives and subsets of the singleton 7
6 Introducing types 8
7 Intersections 8
8 Unions 10
9 Legitimate uses of the choice operator 10
10 A simple example of a formal proof 12
11 Conjunction, implication and the description operator 14
12 Final remarks 15

1 Introduction

When Isaac Newton gave his famous formula F = Gmm′/d2, he did not define gravitation.
He only proposed a model for gravitation. The reason for this is that gravitation is a natural
phenomenon that we don’t have to define but rather to discover, to describe or to modelize.
On the contrary, when mathematicians first introduced the notion of group for example,
they defined it because the structure of group is nothing other than an abstract game that
we can define as being whatever we like. The game may be interesting or not interesting,
but it can in no way be false, whichever its definition is.

By contrast, a model of a natural phenomenon can be false, or at least inaccurate. New-
ton’s model of gravitation has been proved slightly wrong by Einstein. Einstein’s general

*Retired from Université Paris-Diderot - France

1



relativity theory, despite it’s considerable success and accuracy (as was also the case for
Newton’s theory) could very well be proved slightly wrong in the future as well.

Now, mathematical proofs also are a natural phenomenon, because mathematicians are
proving mathematical statements since millenaries, and during all that time, they did not
try to define the notion of proof.(1) Despite the growing need in rigour in mathematical
proofs, especially since the XIXth century, their structure did not fundamentally change
during at least the last two millenaries or so. For example, Archimedes’ proofs for the
computation of the surface and volume of a sphere are very acceptable today after some
cosmetic cleanup. Actually, G. Gentzen, one of the pioneers of proof theory, called “natu-
ral deduction” one of his models for the notion of proof, emphasizing the fact that indeed
mathematical proofs belong to the domain of natural phenomenons.

Therefore, we cannot define the notion of mathematical proof. What we have to do is to
modelize it, and as what happens in physics, such a modelization can be slightly (or deeply)
wrong. How a model such as Newton’s formula or Einstein’s theory is confirmed “good”
is by its adequacy with experiments. The same thing happened with Gentzen’s models,
which have been confirmed “good” by the fact that writing formal proofs in these models
was possible. However, the trust in Gentzen’s models has been a bit exagerated to my
opinion. In 1980, W.A. Howard [1] wrote an article containing a theorem establishing
an isomorphism between one of Gentzen’s models and a lambda-calculus with dependent
types. This is known as the “Curry-Howard isomorphism”. This is indeed a theorem,
and actually so trivial that Howard does not even need to prove it. Most proof theorist
have thereafter admitted the fact that there is an isomorphism between mathematical
proofs and this lambda-calculus. However, doing so, they implicitely (and maybe sometimes
unconsciously) admit that Gentzen’s model is perfectly accurate.

The history of the last four decades or so has however proved that Gentzen’s model is not
perfectly accurate, as shown for example by what happened to P. Martin-Löf who explained
in 2006 in [3] why his 1984 type theory [2], based on the Curry-Howard isomorphism,
was actually incorrect. The conceptors of the proof assistant Coq also had to amend their
system after they discovered that an elementary theorem of Diaconescu was not provable
in this system.

These misadventures have of course led to corrections, but the simple fact of beginning
with a concept we are not sure is correct and being obliged to correct it, is unsatisfactory,
in particular because we don’t know if further corrections will be necessary in the future.
This is the reason why I tried to find a method for avoiding such misadventures and directly
find the right language for proofs, without assuming the perfect correctness of any model.
This project can seem desperate at first glance, but actually, it is feasible as shown in this
article.

There are facts which are indisputable in mathematics. I call “indisputable” something
that mathematicians, and especially non logician mathematicians, will admit without dis-
cussion. For example, nobody will say that the equality 1 + 1 = 2, which is taught in
schools everywhere in the world, is false. For this reason, I will freely use such equalities.
Those you will find below could very well be given as exercices in elementary class rooms.
Therefore, they are indisputable.

Here are some comments about this notion of “indisputable”. Because, the notion of proof
1Aristotle tried to defined the notion of truth of a statement, which is a different approach, far from the

notion of proof.

2



and more generally all mecanisms thanks to which we are able to do mathematics are natu-
ral phenomenons which manifests themselves only through the activity of mathematicians,
we have to find informations about them in the behavior of mathematicians. In some sens,
mathematicians are the custodians of these mecanisms. Therefore, if all mathematicians
agree that 1 + 1 = 2, it must be “true”, whatever the formal meaning of “true” is.

I will also use the fact that mathematical proofs (whichever form they have) are mechan-
ically checkable. This is something that mathematicians experience every day. If we have
to read an article, and in particular to check that all proofs it contains are correct, we know
that we will go through the end of this process, and even that this will require a time some-
how proportionnal to the length of the article.(2) In other words, checking a mathematical
proof is an algorithmic process. I rewrite this principle below in a more precise form, which
will lead to discover the syntactic structure of formal mathematical proofs, and we will see
that, modulo cosmetic variations, and with Occam’s razor in hand, this problem has only
one solution. Hence, what matters is not that proofs are algorithms (a fact that many see
as a consequence of the Curry-Howard isomorphism), but the fact that the verification of
proofs itself can be performed by an algorithm. By contrast of course, the search for a proof
of a given statement is not an algorithmic process.

Actually, that mathematical proofs are algorithmically checkable is confirmed by the fol-
lowing facts. If we ask a mathematician to give a definition of the notion of mathematical
proof, the mathematician will most often renounce to answer the question. On the con-
trary, if the question is “what are mathematical proofs good for ?”, the mathematican will
almost always answer that “they are used for ensuring that a given statement is true, and
this in an indisputable way”. This is a pragmatic answer whose accuracy is confirmed by
our everyday practice of mathematics. Actually, this is clearly another indisputable fact.

But here, we have a small problem which is that we need to know what “true” means for a
statement. Actually, “true” (and “false” likewise) are just meaningless for statements in the
absolute, because the truth of a statement depends on which model we use for interpreting
mathematics. This fact has been brilliantly illustrated by K. Gödel and P. Cohen when they
proved the relative consistency and independence of the axiom of choice and the continuum
hypothesis by constructing alternative models of set theory from a given model of this
theory.(3)

Now, if we propose a mathematical statement to a mathematician and just pretend that
this statement is true, the mathematician will not accept this assertion if we do not provide
a proof of the statement. This behavior can be considered as part of the ethics of mathe-
matics, stating that every assertion must be proved before it can be accepted as “true”. In
other words, mathematicians do not care about truth at all. They care only about provabil-
ity. This is why the fact that “true” and “false” are meaningless, when there is no reference
to a particular model of mathematics, has no importance in everyday mathematics.

As said above, for a non logician mathematician, a proof of a statement is just a tool for
ensuring that this statement is “true”, whatever “true” means. Since “true” does actually
not mean anything, the proof itself, not the truth of the statement, is the real goal of the
game. Furthermore, mathematical proofs do not need to have a semantics. The algorithmic

2N. Bourbaki would have said : “cela ne requiert qu’une attention en quelque sorte mécanique.”
3This was also probably what B. Russell has in mind when he said that in mathematics, we don’t know what

we are talking about (in the absence of a model), and we don’t know if what we are saying is true (because it
depends on the model).

3



nature of the verification of proofs implies that they are of a purely syntactic nature. The
language of proofs is a language with no signification at all. Of course, this is only the point
of view of non logicians. There are logicians who define semantics for proofs in various
ways, and I know people (which includes myself) who are playing this game.

Before you read the sequel, you must be fully aware of the fregean dichotomy between
the signifier (expression of a language) and the signified (what this expression represents).
This is of primary importance. Indeed, we will essentially work with a singleton set, its
unique element and its two subsets, which can look so trivial that nothing interesting can
be said about them. However, this unique element and these two subsets can be repre-
sented by an infinity of distinct expressions, and this is far from trivial because, as we
shall see, these expressions contain all possible statements and all possible proofs of math-
ematics.

To close this introduction, and because this article is not about mathematics but about
metamathematics, it can be seen as not as indisputable as an article of actual mathemat-
ics. I recognize this fact, and therefore I invite the readers to construct their own opinion
on this matter. At least, I hope that readers will agree that I do not rely on the accuracy
of any model of the notion of proof, and that my assertions are either truely indisputable
equalities, or facts required by the necessity of preserving phaneroalethicity (a notion de-
fined below in order to modelize the notion of algorithmic checkability).

2 Preliminaries

In the language of mathematics, we use three main kinds of expressions. We have terms
for representing so-called mathematical objects, we have statements for representing truth
values, and we also have proofs.

An expression, should it be a term, a statement or a proof, can have free variables. If it is
the case, this expression can be meaningful only within a context which declares all these
free variables. In order to avoid unnecessary complications, I assume that the variables
declared in a context have two by two distinct names.

I use the letter Γ for representing an arbitrary context. Each declaration in a context will
be written (x ∈ X) where x is a variable (a.k.a. symbol) and X is an expression representing
a set. Hence, a sequence of declarations :

(x1 ∈ X1) . . . (xk ∈ Xk)

is a context, where (xk ∈ Xk) is the most recent declaration. Notice that a declaration can
depend on previous declarations in the sense that Xk can need to be interpreted in the
context (x1 ∈ X1) . . . (xk−1 ∈ Xk−1). In other words, Xk can have free occurrences of the
variables x1, . . . , xk−1. The context with no declaration at all is called the empty context.

In usual mathematics, a context is not made of declarations only. Indeed, if we have pro-
duced a proof p of some statement E, in a context Γ, we can record this within the context
for using it later on. Hence, we allow entries of the form (p ` E) (read “p proves E”) in a
context. Such entries can be called “facts”. We also sometimes have to make an “assump-
tion” (for example when we prove an implication), so that we can have entries of the form
(ζ ` E), where ζ is a symbol instead of a proof of E, but actually plays the same role as a
proof of E (because of what “assuming” means).

4



Quite often, I omit to mention the context, but only when the context is arbitrary and
all expressions involved are meaningful in this same context. In any case, everything is
always to be interpreted in some context.

I also assume that the reader is familiar with the notion of replacement. Given an expres-
sion E, possibly having free occurences of a variable x representing an arbitrary element
of some set X, and given a term a representing an element of this same set X, the notation
E[a/x], that reads “E where a replaces x”, represents the result of replacing all free occur-
rences of x in E by a. As is well known, this process must be performed with care. Precisely,
one can have to rename some bound variables in E before performing the replacement in
order to avoid any capture of a variable that appears free in a.

3 Phaneroalethicity

Consider an algorithm taking as input a statement E and a context Γ within which E is
meaningful, and returning one of the following two answers:

• “the truth of E is apparent in the context Γ”.

• “I cannot draw any conclusion from the examination of E”.

Such an algorithm will be called a “phaneroalethicity algorithm” and denoted PA.(4) A
statement E whose truth is apparent according to PA in the context Γ is said to be
“phaneroalethic” in the context Γ, an assertion that we simply denote PA(E,Γ). Of course,
the algorithm is supposed to be designed in such a way that if PA(E,Γ), then E is indeed
true in the context Γ (the algorithm does not lie).

The algorithm PA is not supposed to be a proof search algorithm. It is only supposed
to draw a conclusion by a simple syntactic examination of E, using only the context Γ.
In particular, the duration of this examination should be roughly linear in the size of E.
A simple example of such an algorithm is the one which always answers that it cannot
draw a conclusion, but of course, it cannot be very useful. Nevertheless, the algorithm
can easily answer that E is true when asked if E is phaneroalethic in Γ if Γ contains an
entry of the form (p ` E), should this entry be a fact or an assumption. Notice that if the
context contains the declaration (x ∈ X), the statement x ∈ X should also be considered as
phaneroalethic in Γ.

In the sequel, we assume that PA indeed performs such checks, among other capabilities
to be discovered below. We will indeed see that we are naturally led to design an algorithm
PA in a simple way. For the time being, we just assume that we have such an algorithm.

Of course, the notion of phaneroalethic statement is not a mathematical notion, but a
metamathematical notion since it expresses a property of notations, not a property of what
these notations represent.

4 Characterization of formal proofs

We need a singleton 1 = {∗}, i.e. a set with only one element. The main property of this set
and of all its subsets, that we will use repeatedly below, is that “any two elements of such

4From the greek words φανερός (apparent) and αλήθεια (truth).

5



a set are equal”.

Let E be a statement meaningful in some context Γ. Let x be a variable (not declared in Γ).
We define the set :

W (E) = {x ∈ 1 | E}

which is meaningful in Γ. Notice that because of our conventions and because E is mean-
ingful in Γ, x cannot have any free occurrence in E.

A classical mathematician would just remark that W (E) = 1 if E is true and W (E) = ∅
if E is false, which is of course correct. However, the complexity of what we are doing
here appears for example if we consider W (R) where R is Riemann’s conjecture, or W (H),
where H is the continuum hypothesis. In the first case, we just don’t know (at the time
I’m writing this) what W (R) is, and we know that we can choose whatever we want for
W (H). This phenomenon is not due to the singleton itself which is a rather trivial object,
but to the power of the comprehension principle, which as we know is the tool by which
some paradoxes can be constructed.

The following lemma, which is essentially a consequence of the fact that x has no free
occurrence in E, is trivial but is nevertheless the key for the subsequent characterization
of formal proofs.

Lemma 1 Let E be a statement and p a term representing an element of 1. Then E is
equivalent to p ∈W (E).

Remark : Of course, a context Γ is implicitely assumed, and the sentence “Let E be a statement”
means that E is meaningful in Γ. Similarly, p, which can be a huge expression, is supposed to be
meaningful in Γ and representing an element of 1. The conclusion is also supposed to hold in Γ.

Proof : p ∈W (E), i.e. p ∈ {x ∈ 1 | E}, is equivalent to E[p/x], which is E because x has no
free occurrence in E. 2

Some mathematicians could not like the above proof because of the use of the replacement.
A more conventional proof could go like this :

If we have E, W (E) is 1, hence contains ∗. Because p ∈ 1, we have p = ∗, hence p ∈ W (E).
Conversely, if p ∈W (E), we have ∗ ∈W (E), hence E. 2

Now, here is how I want to characterize mathematical proofs. This is a precise version
of the main principle asserted in the introduction, namely that proofs are mechanically
checkable :

Given a statement E meaningful in a context Γ, any term p representing an
element of 1, such that the statement p ∈ W (E) is phaneroalethic in Γ can be
considered as a proof of E in the context Γ.

This characterization is justified by the fact that if p ∈ W (E) is phaneroalethic in Γ, then
it contains all the necessary information (together with Γ) for mechanically (i.e. using
the algorithm PA) establishing that E is true. This is why a term p satisfying the above
characterization can undoubtly be called a proof of E (in the context Γ). I do not say that all
possible proofs ofE are characterized that way, but only that terms which are characterized
that way have the absolute right to be called proofs of E, just because “they do the job”.

Of course, this characterization depends on what the algorithm PA is able to do. At the
limit, if PA always answers that it cannot draw a conclusion, no term can be a proof of any

6



statement. However, as already stated, an algorithm PA whose capabilities are what we
expect will emerge in a natural way.

Hence, according to this characterization, any proof of any statement is just a term repre-
senting the unique element ∗ of 1. This is of course equivalent to saying that proofs have
no semantics at all, and by the way it entails the proof irrelevance principle (and is actu-
ally much more radical, since all proofs of all statements appear to be “equal”). However,
the only important point is the fact that p ∈ W (E) is phaneroalethic, in other words the
fact that a proof can be checked algorithmically in essentially linear time in the size of the
proof, the statement and the context.

In other words, a “proof checking” algorithm PC, checking that a candidate proof p
of a statement E in the context Γ is correct, could simply be defined by the equation
PC(p,E,Γ) = PA(p ∈W (E),Γ).

5 Logical connectives and subsets of the singleton

In order to fullfil the program of discovering the structure and syntax of formal proofs
without relying on any postulate, but using only ordinary mathematical reasonning, the
equalities below should be considered as assertions that anyone can easily verify. This
should not be a problem for mathematicians who of course already know the meaning of
logical connectives and the meaning of intersection and union. Actually, proving these
equalities could very well be asked to students. One could say that the exercice is somehow
“exotic”, but in no way incorrect or false.

Recall that logical connectives are ⊥ (false), > (true), ∨ (or), ∧ (and), ⇒ (implies), ¬ (not),
∀ (for all) and ∃ (exists). In two of the equalities below, I wrote E[x] instead of E because I
want to stress the fact that E can have free occurrences of x :

W (>) = 1
W (⊥) = ∅

W (E ∨ F ) = W (E) ∪W (F )
W (E ∧ F ) =

⋃
ζ∈W (E) W (F )

W (E ⇒ F ) =
⋂
ζ∈W (E) W (F )

W (¬E) =
⋂
ζ∈W (E) ∅

W (∀x∈X E[x]) =
⋂
x∈XW (E[x])

W (∃x∈X E[x]) =
⋃
x∈XW (E[x])

As said above, all these equalities are clearly true in classical mathematics (in any context),
even if those concerning ∧, ⇒ and ¬ may look a bit tricky. Nevertheless, they are easy to
check if we remember that W (E) cannot have more than one element, that the union of
the empty family of subsets of 1 is empty, and that its intersection is 1.

In the cases of ∧ and ⇒, the statement F should have no free occurrence of ζ, because in
the left hand member of the equality, there is no declaration of ζ. However, the fact that F
should have no free occurrence of ζ is only an impression, because we will see in another
section below that F can indeed (and actually must in many cases) have free occurrences
of ζ and that the declaration of ζ in the left hand member is just “invisible” or “implicit”.

Thus, the fact that the above equalities are true in classical mathematics is just indis-
putable, is not a postulate, not even a kind of definition of the logical connectives.

7



We can of course forget about the negation since ¬E is just a shortcut for E ⇒ ⊥. We can
also consider ∧ and ⇒ as special cases of ∃ and ∀, where the set X is replaced by W (E),
and E[x] by F .

6 Introducing types

We are now at the point where being conscious that what we are going to do concerns
notations, not what these notations represent, is essential. Indeed, the correctness of what
follows does not depend only on what these notations represent, but on these notations
themselves. Unlike what happens in mathematics, two notations representing the same
thing are not necessarily interchangeable. One can easily check that this phenomenon is
just a consequence of the need for phaneroalethicity.

In the sequel, I use the word “represents” instead of “is” in order to remind the reader that
the things in question are expressions, not mathematical objects.

Let (Ai)i∈I represent a family of subsets of 1, where I represents an indexing arbitrary set.
As usual, this is relative to a context Γ, and what the word “family” actually means is that
I is meaningful in Γ, as an expression representing a set, and that Ai is meaningful in the
context Γ(i ∈ I) as an expression representing a subset of 1.

Hence, what matters now is how we produce phaneroalethic statements of the form
a ∈

⋂
i∈I Ai and a ∈

⋃
i∈I Ai, possibly from other phaneroalethic statements. It will be

immediately visible that the expressions we introduce for representing an element in a
subset of 1 are meaningful only if this subset of 1 is itself represented in a specific way.
This is just a consequence of the necessity to produce phaneroalethic statements. For this
reason, expressions representing subsets of 1 will not be called “subsets if 1” but “types”,
and a statement of the form a ∈ A, where A is a type, will be read as “a is of type A”. We
will also use the shortcut p ` E (read “p proves E”) for p ∈W (E).
We will see below that at some point we need an algorithm computing the type of a term in
a given context, and that the need for this algorithm has an influence on the design of the
syntax of the language of proofs. It requires that the terms we are on the point to introduce
for representing proofs, must contain more informations than they would otherwise need
to contain. This algorithm is denoted TypeOf below.

7 Intersections

Let (Ai)i∈I represent a family of types, as in the previous section.

Assume that the statement ai ∈ Ai is phaneroalethic in Γ(i ∈ I) (intuitively, phaneroalethic
in Γ for all i in I). Then, we can enhance the algorithm PA so that the statement (ai)i∈I ∈⋂
i∈I Ai is phaneroalethic in Γ. Indeed, from the expression (ai)i∈I ∈

⋂
i∈I Ai and the context

Γ, we can (algorithmically) reconstruct the expression ai ∈ Ai and the context Γ(i ∈ I).
Furthremore, since ai ∈ Ai is phaneroalethic in Γ(i ∈ I), hence true, we have ∗ ∈ Ai for all
i ∈ I. This implies ∗ ∈

⋂
i∈I Ai, so that (ai)i∈I ∈

⋂
i∈I Ai is true in Γ, as required for being

phaneroalethic.

Notice that we could not have written ai ∈
⋂
i∈I Ai instead of (ai)i∈I ∈

⋂
i∈I Ai because this

expression must be meaningful in a context which does not declare i.

8



However, we will prefer the notation (i ∈ I) 7→ ai to the notation (ai)i∈I for the reason that
the declaration i ∈ I comes before its scope ai. There are situations where ai is a huge
expression, and in this case the syntax (ai)i∈I would become unreadable. It also happens,
as we shall see below, that the sentences representing this construction in the vernacular
language of mathematical proofs have the declaration at the beginning.

The fact that we use a notation generally used for representing functions, for representing
the unique element of 1 may be disturbing. However, you have seen above that a notation
of this kind is necessary to ensure phaneroalethicity. By the way, the choice of this notation
will also make it clear that proofs can be seen as algorithms, but this is not the point for
what we are doing here.

This gives us a new rule participating to the definition of the algorithm PA. Indeed, we
have :

PA((i ∈ I) 7→ ai ∈
⋂
i∈I

Ai,Γ) whenever PA(ai ∈ Ai,Γ(i ∈ I))

The reader will be able to easily verify that this rule together with the other rules dis-
cussed below and with what has already been said about how PA can extract facts from
the context, constitute a recursive well founded computer program defining the algorithm
PA.

Because of the equalities in section 5 and our notational conventions, the above rule spe-
cializes into the two rules :

PA((x ∈ X) 7→ px ` ∀x∈X E[x],Γ) whenever PA(px ` E[x],Γ(x ∈ X))
PA((p ` E) 7→ qp ` E ⇒ F,Γ) whenever PA(qp ` F,Γ(p ` E))

which are among our familiar proof rules. Similar particularizations can be written from
the other rules to come below, but this is left to the reader.

It can be the case that we have an element x in
⋂
i∈I Ai, and that we want to consider it

as an element of Au for some u that is known to be an element of I. We have to design a
notation p that will make the statement p ∈ Au phaneroalethic in Γ, under the hypothesis
that both x ∈

⋂
i∈I Ai and u ∈ I are phaneroalethic in Γ. In other words, this notation must

contain enough informations so that these two statements can be reconstructed. Clearly,
both x and u must be part of it.

Here, we have a problem because the expression Ai itself cannot be recovered from Au,
which is supposed to be Ai[u/i]. Indeed, replacement is not a reversible operation. The set
I itself cannot be recovered from x, u and Au, except if we are able to compute the type of x.
This is why we have assumed above that we have the algorithm TypeOf .

Hence, things will go as follows. From x and Γ, we can get the type of x, which must
have the form

⋂
i∈I Ai. From here, we have everything needed in order to construct the

statements x ∈
⋂
i∈I Ai and u ∈ I.

Hence, we adopt the notation x(u) (read “x applied to u”), and we have :

PA(x(u) ∈ B,Γ) whenever


TypeOf(x,Γ) has the form

⋂
i∈I Ai

B is identical to A[u/i]
PA(u ∈ I,Γ)

Notice that the fact that TypeOf(x,Γ) has the form
⋂
i∈I Ai entails that the statement

x ∈
⋂
i∈I Ai is phaneroalethic in Γ, which means that ∗ belongs to all Ai, hence to Au, so

that the statement x(u) ∈ Au is true.

9



The precise meaning of the expressions “has the form” and “is identical to” is just “is alpha-
equivalent to”, i.e. syntactically identical up to a renaming of bound variables.

8 Unions

The case of unions is a bit more tricky than the case of intersections. Again, we consider a
family (Ai)i∈I of types.

If u ∈ I and a ∈ Au are phaneroalethic in Γ, Au contains ∗, so that
⋃
i∈I Ai also contains ∗.

Hence, from these, we have to design a statement of the form p ∈
⋃
i∈I Ai phaneroalethic in

Γ. Clearly, p should make use of u and a, so that we use the notation 〈u, a〉. However, this
is not enough, because TypeOf will not be able to compute the type of 〈u, a〉, again for the
reason that Ai cannot be computed from Au (which is A[u/i]). Hence, we use the “enriched”
notation 〈u, a〉i∈I,Ai for this metamathematical pair, that I want to call a “Heyting pair”,(5)
and we can enhance the algorithm PA with the rule :

PA(〈u, a〉i∈I,Ai ∈
⋃
i∈I

Ai,Γ) whenever
{

PA(u ∈ I,Γ)
PA(a ∈ Ai[u/i],Γ)

Notice that the statements u ∈ I and a ∈ Ai[u/i] can be algorithmically reconstructed from
the statement 〈u, a〉i∈I,Ai ∈

⋃
i∈I Ai.

Despite the fact that 〈u, a〉i∈I,Ai is a notation for ∗, it is a pair from the syntactic viewpoint.
Hence, we can possibly make use of the two canonical projections π1 and π2 for extracting
either u or a from this pair. However, π1 is not well defined. Indeed, consider two notations
〈u, a〉i∈I,Ai and 〈v, b〉i∈I,Ai , both representing ∗ ∈ 1, but such that u 6= v (which can happen
if both Au and Av contain ∗). Then we have at the same time π1(∗) = u and π1(∗) = v which
is contradictory. This is why this operator π1 is never used in mathematics, except in some
situations described below where π1 happens to be nevertheless well defined. Apart from
these cases, its use is limited to some metamathematical operations, such as the one that
consists in examining an existence proof in order to try to construct a term representing
the thing whose existence was proved. This operator π1 is known as the “choice operator”.

The second projection π2 is less problematic, because π2(〈u, a〉i∈I,Ai) = a ∈ 1. No such
contradiction as above can arise.

9 Legitimate uses of the choice operator

As said above, there are cases where the use of π1 is legitimate. The first one is when a
statement of the form p ∈ W (∃!x∈X E[x]) is phaneroalethic in Γ (where ∃! means as usual
“there exists a unique”). In this case, there is one and only one x in X such that W (E[x])
contains ∗, and the above contradiction cannot be carried out, so that π1(p) is a legitimate
(well defined) expression. The operator π1 in this case is then called the “description oper-
ator”.

The second case is when π1 is used within an expression representing the unique element
of 1. In this case the problem disappears, since whatever the value produced by π1 is,

5A reference to one of the rules of the so-called “Heyting semantics”.

10



the result will always be the same one, namely ∗. For example, an expression such as
〈π1(x), π2(x)(y)〉i∈I,Ai is well defined because it always represents ∗, whatever the value of
π1(x) is. This is actually the same thing as the well known fact that even if we have to
choose a representative of some equivalence class in order to construct a function whose
domain is a quotient set, what we are constructing is well defined provided that it does not
depend on the choice of this representative.

However, despite the fact that a representative can be “chosen”, it must still be a meaning-
ful object, i.e. be represented by a meaningful expression. This is not what happens in the
statement below:

(ζ ∈W (∀x∈X ∃y∈Y E[x, y])) 7→
〈(x ∈ X) 7→ π1(ζ(x)), (x ∈ X) 7→ π2(ζ(x))〉f∈Y X ,W (∀x∈X E[x,f(x)])

∈W ((∀x∈X ∃y∈Y E[x, y])⇒ (∃f∈Y X ∀x∈X E[x, f(x)]))

that could appear as phaneroalethic in any context if we are not careful enough. Indeed,
despite the fact that π1(ζ(x)) is meaningful whatever the expression ζ(x) is, the expression
(x ∈ X) 7→ π1(ζ(x)) can be meaningless because it can be the case, for some x in X, that
there are two distinct elements y1 and y2 of Y such that both E[x, y1] and E[x, y2] are true.
In this case, π1(ζ(x)) can be either y1 or y2, which makes the function (x ∈ X) 7→ π1(ζ(x))
not well defined despite the fact that both y1 and y2 are well defined.

This example is the “constructive proof” that Martin-Löf gave of the axiom of choice in his
type theory [2] based on the Curry-Howard correspondance, that he recognized as incorrect
in [3].

There is a well known method for avoiding this trap, which is to completely forbid the
use of π1 and introduce instead an explicit description operator and an explicit syntactic
formulation for using the first element of a Heyting pair for constructing a proof, i.e. for
producing an expression representing ∗. It happens that both also have a very explicit
formulation in the vernacular language of mathematical (informal) proofs.

As for the description operator, that we now denote δ, it can be applied to a proof of any
statement of the form ∃!x∈X E. In the vernacular, the operator seems to be applied to this
statement instead of a proof of it, since the formulation is “the unique x in X such that
E”. However, this sentence will never be used if it is not clear that the statement ∃!x∈X E
is true at this point of the text, so that it is indeed applied to a proof of it, even if it is
a supposed (declared) proof resulting from an assumption. Hence, we can enhance the
algorithm PA as follows :{

PA(δ(p) ∈ X,Γ)
PA(E[δ(p)/x],Γ) whenever PA(p ∈W (∃!x∈X E),Γ)

For the other problem, the formulation in the vernacular is the usual one that allows to
use an existence hypothesis of the form ∃y∈Y E:

Let y ∈ Y such that E (ζ), p

where p is a proof of the statement to be proved, but which can use the declaration y ∈ Y
and the assumption ζ ∈ W (E). In our formal language of proofs, we can use a notation
such as :

{p, y ∈ Y, ζ ∈W (E), q}

11



as a proof of a statement C in the context Γ, where p is a proof of ∃y∈Y E in the context Γ
and q a proof of C in the context Γ(y ∈ Y )(ζ ∈W (E)).
In order to fully justify the above formulation, we remark that y represents a meaningful
object, even if this object is “arbitrarily chosen”, and that q, constructed using y, does not
depend on y since it belongs to 1.

Notice that in this formulation, y and ζ play the roles of π1(p) and π2(p). However, the fact
that y is just a symbol makes it impossible to explicitely depend on any other variable, so
that writing something like (x ∈ X) 7→ y cannot define anything other than a constant
function, which is then correct for the reason that the two sets Y and Y 1 are canonically
isomorphic. It should also be noted that because the scope of the declaration of y is lexically
limited to W (E) and q, the first component of the Heyting pair represented by p cannot be
used for “exporting” a mathematical object outside the above expression.

Now, how do we check that a statement of the form

{p, y ∈ Y, ζ ∈W (E), q} ∈ A

is phaneroalethic in a given context Γ ? From this statement, we can mechanically con-
struct the two statements:

p ∈ W (∃y∈Y E)
q ∈ A

We just have to check that p ∈W (∃y∈Y E) is phaneroalethic in the context Γ, and that q ∈ A
is phaneroalethic in the context Γ(y ∈ Y )(ζ ∈W (E)). Notice that doing this, we use exactly
once each information contained in the statement {p, y ∈ Y, ζ ∈W (E), q} ∈ A, except ζ, but
ζ is not significant because it represents ∗, i.e. the only thing that matters is the fact that
W (E) contains ∗, but this is a consequence of the fact that p ∈W (∃y∈Y E).
It is (I think) a remarkable fact that the above two formulations of the vernacular are used
since centuries. What it means, probably beyond the fact that humanity has some kind
of genius, is that proving is a very natural thing. This is consistent with the fact that
mathematicians are able to write read and check proofs without even wanting to define
what they precisely are.

10 A simple example of a formal proof

The statement below is phaneroalethic in any context Γ :

(ζ ` ∃x∈X ∀y∈Y E(x, y)) 7→
(y ∈ Y ) 7→ {ζ, x ∈ X, θ ` ∀y′∈Y E(x, y′), 〈x, θ(y)〉x∈X,W (E(x,y))}

` (∃x∈X ∀y∈Y E(x, y))⇒ ∀y∈Y ∃x∈X E(x, y)

(which means that the first two lines are a proof of the last line). Notice that we have
introduced a variable y′ in the second line because at this point we are in the scope of the
declaration of y at the beginning of this line, and we want to respect the rules stated in
section 2.

The algorithm PA would check this statement after eliminating all logical connectives
according to the equalities in section 5. The reader can simulate this computation with a
little bit of patience. However, the first two lines are easily translated into the vernacular
language as follows :

12



Assume that ∃x∈X ∀y∈Y E(x, y) (ζ). Let y ∈ Y . By (ζ), there is an x ∈ X such
that ∀y′∈Y E(x, y′) (θ). By (θ), we have E(x, y).(6) Thus, we have proved that
∀y∈Y ∃x∈X E(x, y).

It should be noticed that the vernacular lacks some formulations, and that some periphra-
sis must be used instead. In particular, there is nothing corresponding to our “applicative”
notation x(u) defined in section 7, and also nothing for representing Heyting pairs. Hence,
the formal proof 〈x, θ(y)〉x∈X,W (E(x,y)), is something that the reader of an informal proof
must synthesize mentally. The sentence “Thus, we have proved that . . . ” of course is an
inducement for this synthesis.(7)

The variable x declared in the second line (within the curly brackets) represents π1(ζ), and
the hypothesis ∀y′∈Y E(x, y′) is actually proved by π2(ζ), here represented by θ.

The fact that ∃x∈X ∀y∈Y E(x, y) entails ∀y∈Y ∃x∈X E(x, y) generally does not deserve a proof
in mathematical texts. It is most often considered as “obvious”, and indeed, a well designed
proof search algorithm can easily find proofs of implications of this kind. This example
shows that a formal proof has much more details than an informal proof, and consequently
that the more or less unconscious work performed by the brain of a mathematician when
reading an informal proof is an important part of the work.

It should also be obvious from the above example that the language of formal proofs is
a functional programming language. Proofs are essentially made of (metamathematical)
pairs and functions. In other words, proofs are indeed algorithms.

The language of proofs established by the method of this article is actually the same as the
lambda-calculus with dependent types refered to in the introduction, with the difference
that the operators

⋃
and

⋂
replace the operators

∐
and

∏
. This has absolutely no impact

for example on the fact that the usual rewriting rules apply to the system established here,
and that the resulting rewriting system is nœtherian and confluent. The only decisive
difference is that in the case of the lambda-calculus, a type of the form

∐
i∈I Ti can very

well have several distinct elements even if all Ti have at most one element. On the contrary∏
i∈I Ti always has at most one element when all Ti have at most one element. Hence, a

simple way of making the lambda-calculus with dependent types equivalent to the system
presented here is to replace

∐
i∈I Ti by (

∐
i∈I Ti)/ ', where ' is the equivalence relation

which identifies any two elements of
∐
i∈I Ti. But this is precisely equivalent to introducing

an axiom stating the indiscernibility of proofs. What this article proves (to my opinion) is
that indiscernibility of proofs is not an option, but a mandatory characteristic of any correct
formalization of usual mathematics.

I know that this opinion is contrary to the main stream opinion among proof theorists,
which is why I have been criticized at the end of almost any of my conferences. However,
such critics seem unjustified because it is of course not forbidden to propose semantics for
proofs which will contradict the indiscernibility of proofs. This can be done for various very
good reasons. There is simply no reason that there is one and only one possible semantics
for proofs. Many different semantics can very well cohabit in mathematical logic, in the

6E(x, y) is θ(y).
7The mathematician does not of course consciously synthesize the formal expression 〈x, θ(y)〉x∈X,W (E(x,y)),

but his/her brain constructs something that is equivalent, otherwise proofs would not be indisputable. Actually,
what happens here is the usual reasonning : “What I am doing is valid for any y ∈ Y , I have an x ∈ X and
E(x, y) is true. Hence, I have proved ∀y∈Y ∃x∈X E(x, y)”, which is just a résumé of the second line of our
expression.

13



same way as mathematics can be interpreted in a variety of models.

The following remark has been made by several people : if all proofs (of the same statement,
say) are “equal”, then how can a proof assistant correctly work ? I answer by a simple
comparison. Instead of a proof assistant, which is a huge and complex machinery, consider
a simple calculator just able to add positive natural integers. If you enter 1 + 1 into the
calculator, it will replace it by 2, because it is able to undertand the difference between
1 + 1 and 2, which is required for performing this computation. Nevertheless, 1 + 1 is
still “equal” to 2, which is actually the reason why the calculator dares to replace 1 + 1
by 2. In other words, we should not confuse the signifiers (expressions) and the signified
(what expressions represent). Similarly, a proof assistant based on a system assuming the
indiscernibility of proofs, is of course able to perceive the difference between two proofs,
and actually, the system does not care about equality of proofs, but it cares about one of its
consequences which is that the choice operator π1 must not be used, at least not for any
strictly mathematical purpose. The axiom of choice can be used in mathematics, but using
it does not imply that we use the choice operator.

11 Conjunction, implication and the description operator

I have characterized ∧ and⇒ as follows :

W (E ∧ F ) =
⋃
ζ∈W (E) W (F )

W (E ⇒ F ) =
⋂
ζ∈W (E) W (F )

and we have already noticed that the notation E ∧ F is not formally coherent with⋃
ζ∈W (E) W (F ), because assuming that both expressions are to be interpreted in some con-

text Γ, F appears to be interpretable in Γ in the left hand expression and in Γ(ζ ∈ W (E))
in the right hand expression, hence actually not interpretable in Γ as soon as it has at least
one free occurrence of ζ.

This is not a paradox but the consequence of the fact that the declaration and use of ζ in
the expression E∧F are not reflected by the syntax. In other words, they are just invisible.

This invisibility is a consequence of the fact that any two elements of 1 are equal. Indeed,
because ∗ is alone in 1, it does not need to have a name. It can be unambiguously desig-
nated as “the unique element of 1”, in the same way as if you are alone on a (previously)
desert island, you don’t need a name, since you are just “the one on the island”.

The following elementary example shows that ζ can indeed be invisibly declared and used
in an expression such as E ∧ F . Let A be a subset of N, and consider the statement :

A 6= ∅ ∧ inf(A) = 0

where inf(A) is the greatest lower bound (infimum) of A. Since only non empty subsets of N
have an infimum, the “hypothesis” A 6= ∅ is required for inf(A) to be meaningful. In other
words, this hypothesis is used within the very expression inf(A). In order to make all these
invisible things visible, the above statement could be written :

(ζ ` A 6= ∅) ∧ inf[ζ](A) = 0

which, because of the equalities in section 5, is just an alternative notation for :

∃ζ∈W (A 6=∅) inf[ζ](A) = 0

14



stressing the fact that ζ is declared in the left hand operand of ∧ and used by inf(A) in the
right hand operand of ∧. By the way, this also shows that in the case of this example, the
conjunction is not commutative.

How inf(A) makes use of ζ is through the description operator. Indeed, inf(A) is defined
in usual mathematics by a sentence beginning by “the unique element of N such that . . . ”,
and such a sentence is accepted only if the statement “there is a unique element of N such
that . . . ” can be assumed true at this point. This is known as the “principle of description”,
and this is nothing other than how the vernacular language of mathematics handles the
description operator. Actually, the description operator is the only way to extract a term
(representing an actual mathematical object other than ∗ ∈ 1) from a proof.

Here is how inf(A) is precisely constructed. We first prove, using the hypothesis A 6= ∅
that there exists a unique element i in N that has the property of being an infimum of A.
This proof p is that of an existential statement, i.e. it represents an element of a set of the
form W (∃!i∈N . . . ). Since elements of such a set are represented by Heyting pairs, we can
apply π1 (= δ) to this proof, which yields the infimum of A. Notice that this can be done
even if this proof is not in the form of a Heyting pair, but in this case the expression π1(p)
is just not reducible, which just means that the infimum cannot be computed. However, if
this happens in the empty context, one can prove that the normal form of p is indeed an
Heyting pair and consequently that the infimum can actually be computed.

Notice that the usual boolean truth table for the conjunction is of no help for understanding
this conjunction. The above discussion also applies mutatis mutandis to the implication.

12 Final remarks

It should now be clear that the notion of mathematical proof has much more to do with the
notion of algorithm than with the (meaningless) notion of truth.

When he proposed his natural deduction model for proofs, Gentzen was guided by how
mathematicans are writing proofs. In other words, this model is the result of the obser-
vation of the behavior of mathematicians. The approach proposed in the present article is
not based on how mathematicians write proofs, but on the single fact that proofs are al-
gorithmically checkable. Furthermore, I have shown how this fact essentially determines
the very syntax of formal proofs. This may explain why proofs are what they are, because
the purpose of a proof is to convince people (including oneself) of the truth of a statement.
Proposing an explanation that everyone can mecanically check is undoubtly one of the best
methods for acheiving this goal.

Of course, the resulting syntax is also highly dependent on our set of logical connectives. If
we were to use another set of connectives, the language of proofs would probably be differ-
ent. However, our set of logical conectives can be justified by the fact that the operations
⊥ and > are respectively left and right adjoint (with respect to the deduction preorder re-
lation, whatever this relation is) to the action of forgetting a statement, that similarly ∨ is
left adjoint to the duplication operation of a statement, and that ∃ and ∀ are respectively
left and right adjoints to the action of declaring of variable. The forgetful, duplication
and variable declaration actions are clearly more fundamental operations than the logical
connectives, and they are very natural. This is probably the path humanity followed for
“inventing” mathematics and in particular the notion of proof. It should be noticed that

15



the notion of adjoint functors (adjoint increasing maps in this case) is one of the most used
processes for defining new concepts in mathematics, and that it was used in a natural and
instinctive way even before this notion was explicitely introduced.

It may look surprising that despite the fact that we used only classical mathematical rea-
soning, accepting in particular the fact that the singleton has only two subsets, what we
discover is a purely intuitionistic proof system. But this is just because all proof rules
we use in classical mathematics are actually intuitionistic rules. Classical mathematics is
reached by adding the axiom of choice, which is not a proof rule, to our arsenal.

The method exposed in this article also has the advantage of avoiding assuming any a
priori syntax for proofs, and therefore avoiding the problems recalled in the introduction.
Shouldn’t it be how proof theory should be taught ?

References

[1] W. A. Howard : The formula-as-type notion of construction. in J. R. Hindley and
J.P. Seldin, To H. B. Curry Essays on combinatory logic, lambda-calculus and
formalism. Academic Press 1980.

[2] P. Martin-Löf : Intuitionnistic type theory. Studies in Proof Theory, Bibliopolis,
Naples, 1984.

[3] P. Martin-Löf : 100 Years of Zermelo’s Axiom of Choice : What was the Problem
with It ? The Computer Journal Volume 49 Issue 3, May 2006. Pages 345-350

16


