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Plan

I Motivation: Deformation theory and homotopy theory

I Differential graded Lie algebras (=dg Lie algebras) vs L∞-algebras

I Homotopy theory of differential (associative) algebras
I Formal deformations and cohomology theory of differential algebras
I L∞-structures
I homotopy Rota-Baxter algebras
I minimal model

I Other operated algebras



Part I: Philosophy of Deformation Theory after Deligne,
Drinfeld, Kontsevich,...

I (Deligne 1986): "The deformation theory of any

mathematical object, e.g., an associative algebra, a

complex manifold, etc., can be discribed starting from

a certain dg Lie algebra associated to the

mathematical obejct in question."

Theorem (Lurie, Pridham)
In characteristic 0, there exists an equivalence between the ∞-category of
formal moduli problems and the ∞-category of DG Lie algebras
(L∞-algebras).

J. Lurie, DAG X: Formal moduli problems.

J. P. Pridham, Unifying derived deformation theories, Adv. Math.
224 (2010), no. 3, 772-826.
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Part I: Problems from Deformation Theory

Given an algebraic structure governed by an operad P, two basic
problems of deformation theory:

Problem
Find a homotopy version (or minimal model) P∞

Problem
Define the deformation cohomology of P-algebras and describe the L∞
structure on the deformation complex



Part I: Koszul case

Assume the operad P is Koszul.

Example

I associative algebras

I commutative associative algebras

I Lie algebras

I Poisson algebras

I pre-Lie algebras

I Leibniz algebras

I Lie triple systems

I etc



Part I: Koszul case

Problem
Find a homotopy version (or minimal model) P∞

Answer
P∞ = Ω(P ¡) is the minimal model of P.

V. Ginzburg, M. Kapranov, Koszul duality for operads. Duke Math.
J. 76 (1994), no. 1, 203-272.

E. Getzler and D. S. J. Jones, Operads, homotopy algebra and
iterated integrals for double loop spaces, hep-th/9403055 (1994).



Part I: From minimal models to L∞-structures

Problem
Describe the L∞ structure on the deformation complex

Answer
Given a cofibrant resolution, or in particular, the minimal model P∞ of
P, one can define the deformation cohomology and describe the L∞
structure on the deformation complex.

M. Kontsevich and Y. Soibelman, Deformations of algebras over
operads and the Deligne conjecture, Conférence Moshé Flato 1999,
Vol. I (Dijon), Math. Phys. Stud. 21 (2000), 255-307.



Part I: Koszul case

Given a Koszul operad P,

minimal model P∞ = Ω(P ¡)
⇓

deformation complex Hom(P ¡,EndV )
and

dg Lie algebra structure on the deformation complex



Part I: Non-Koszul case

When P is NOT Koszul, no general answer so far.

Example

I Rota-Baxter associative/Lie algebras

I differential associative/Lie algebras with nonzero weight

I Hom-associative algebras, Hom-Lie algebras, · · ·
I etc



Part I: Differential algebras

Definition
Let λ ∈ k be a fixed element. A differential algebra of weight λ is an
associative algebra (A, µA) together with a linear operator dA : A→ A
such that

dA(ab) = dA(a)b + adA(b) + λ dA(a)dA(b), ∀a, b ∈ A.

Example
Let A = C∞(R) be the algebra of smooth functions on R. Let d be the
classical derivation operation of smooth functions. Then A is a
differential algebra of weight 0.



Part I: Zero weight vs nonzero weight

Remark
The defining relation of differential operators of any weight is given by

dA ◦ µA = µA ◦ (dA⊗Id + Id⊗µA) + λ µA ◦ (dA⊗dA)

expressed in terms of maps. If λ = 0, the operad of differential algebras
of weight zero is Koszul, as shown by Loday in 2010.
When λ 6= 0, this relation is NOT quadratic and the operad of differential
algebras of nonzero weight is not quadratic and not even homogeneous,
so the Koszul duality theory for operads could not be applied directly to
develop a cohomology theory of differential algebras of any weight.

Question (Loday)
If the parameter λ is different from 0, then the operad λ-AsDer is not a
quadratic operad since the term d(a)d(b) needs three generating
operations to be defined. So one needs new techniques to extend Koszul
duality to this case.

J.-L. Loday, On the operad of associative algebras with derivation,
Georgian Math. J. 17 (2010), 347-372.



Part I: Non-Koszul case

Four steps:

formal deformations
⇓

deformation complex
⇓

L∞-structure
m

minimal model



Part II: Differential graded Lie algebras

Throughout this talk, let k be a field of characteristic zero.

Definition
A differential graded Lie algebra (aka dg Lie algebra) is a graded space
L = ⊕i∈ZLi together with two operations:

l1 : Li → Li−1

of degree −1 and
l2 : Li ⊗ Lj → Li+j

of degree zero such that

(i) l1 : Li → Li−1 is a differential,

(ii) l2 : Li ⊗ Lj → Li+j is a Lie bracket,

(iii) l1 is a derivation for l2 ,i.e.

l1l2(a⊗ b) = l2(l1(a)⊗ b) + (−1)|a|l2(a⊗ l1(b))

for a, b ∈ L homogeneous.



Part II: Maurer-Cartan elements in dg Lie algebras

Definition
Let L be a dg Lie algebra. An element α ∈ L−1 is a Maurer-Cartan
element if

l1(α)− 1

2
l2(α⊗α) = 0.

Proposition (Twisting procedure)
Let L be a dg Lie algebra. Given a Maurer-Cartan element α ∈ L−1, one
can produce a new dg Lie algebra by imposing

lα1 (x) = l1(x)− l2(α⊗x)

and
lα2 (x⊗y) = l2(x⊗y)



Part II: L∞-algebras

Definition
Let L =

⊕
i∈Z

Li be a graded space over k. Assume that L is endowed with

a family of linear operators ln : L⊗n → L, n ≥ 1 with |ln| = n − 2
satisfying the following conditions: ∀σ ∈ Sn, x1, . . . , xn ∈ L,

(i) (Skew-symmetry)

ln(xσ(1)⊗ . . .⊗xσ(n)) = χ(σ, x1, . . . , xn)ln(x1, . . . , xn),

(ii) (Higher Jacobi identities)
n∑

i=1

∑
σ∈Sh(i,n−i)

χ(σ, x1, . . . , xn)(−1)i(n−i)

ln−i+1(li (xσ(1)⊗ . . .⊗xσ(i))⊗xσ(i+1)⊗ . . .⊗xσ(n)) = 0,
where Sh(i , n − i) is the set of (i , n − i) shuffles, i.e.,
Sh(i , n − i) = {σ ∈ Sn such that σ(1) < σ(2) < · · · <
σ(i), and σ(i + 1) < σ(i + 2) < . . . σ(n)}.

Then (L, {ln}n≥1) is called a L∞-algebra.



Part II: Maurer-Cartan elements and L∞-algebras

Definition
Let (L, {ln}n≥1) be an L∞-algebra and α ∈ L−1. Then α is called a
Maurer-Cartan element if it satisfies equation:

∞∑
n=1

1

n!
(−1)

n(n−1)
2 ln(α⊗n) = 0,

whenever this infinite sum exists.

Proposition
Let (L, {ln}n≥1) be an L∞-algebra. Given a Maurer-Cartan element α in
L∞-algebra L, we can define a new L∞ structure {lαn }n≥1 on graded
space L, where lαn : L⊗n → L is defined as :

lαn (x1⊗ . . .⊗xn) =
∞∑
i=0

1

i !
(−1)in+

i(i−1)
2 ln+i (α

⊗i⊗x1⊗ . . .⊗xn).



Part III: Differential algebras

Definition
Let λ ∈ k be a fixed element. A differential algebra of weight λ is an
associative algebra (A, µA) together with a linear operator dA : A→ A
such that

dA(ab) = dA(a)b + adA(b) + λ dA(a)dA(b), ∀a, b ∈ A.

Remark
The defining relation of differential operators of any weight is given by

dA ◦ µA = µA ◦ (dA⊗Id + Id⊗µA) + λ µA ◦ (dA⊗dA)

expressed in terms of maps. If λ = 0, the operad of differential algebras
of weight zero is Koszul, but while λ 6= 0, it is NOT Koszul.



Part III: Formal deformations of differential operators

Definition
Let (A, µA, dA) be a differential algebra. A 1-parameterized family

dt =
∞∑
i=0

di t
i , di ∈ Hom(A,A).

is called a 1-parameter formal deformation of the differential operators
dA if dt is a differential operators of weight λ on the associative algebra
(A[[t]], µA) such that d0 = dA.

For all x , y , z ∈ A, the following equalities hold:

dt(µt(x , y)) = µA(dt(x), y) + µA(x , dt(y)) + λµA(dt(x), dt(y)).



Part III: Formal deformations of differential algebras

For any n ≥ 1, we have

dnµA(x , y) = µA(dn(x), y) + µA(x , dn(y)) + λ
∑
l,m≥0
l+m=n

µA(dl(x), dm(y)).

Consider the case n = 1,

(x + λdA(x))d1(y)− d1(xy) + d1(x)(y + λdA(y)) = 0. (1)



Part III: New structures arising from a differential algebra

Let (A, µA, dA) be a differential algebra of weight λ. Let M be a
differential bimodule.

Proposition
We define a left action “ B ” and a right action “ C ” of A on M as
follows: for any a ∈ A, x ∈ M,

a B x : = ax + λdA(a)x , (2)

x C a : = xa + λxdA(a). (3)

Then “ B ” and “ C ” make M into a bimodule over A and denote this
new bimodule by BMC.

Deformation equation:

x Bd1(y)−d1(xy)+d1(x)Cy = 0⇔ ∂Alg(d1) = 0 ∈ C 2
Alg(A,BAC). (4)



Part III: Cohomology theory of differential operators

Definition
Let (A, µA, dA) be a differential algebra of weight λ. Let M be a
differential bimodule. Then the cochain complex

C•DOλ
(A,M) =:= (C•Alg(A,BMC), ∂),

i.e, the Hochschild cochain complex of A with coefficients in BMC, is
called the cochain complex of differential operator d with coefficients in
the differential bimodule M.

The cohomology groups of C•DOλ
(A, µ, d) are called the cohomology

groups of differential operator d, denoted by H•DOλ
(A).
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Part III: Formal deformations of differential algebras

For any n ≥ 1, we have

n∑
i

µi (µn−i (x , y), z) =
n∑
i

µi (x , µn−i (y , z)),

∑
k,l≥0
k+l=n

dlµk(x , y) =
∑
k,l≥0
k+l=n

(µk(dl(x), y) + µk(x , dl(y)))+λ
∑

k,l,m≥0
k+l+m=n

µk(dl(x), dm(y)).

Consider the case n = 1,

xµ1(y , z)− µ1(xy , z) + µ1(x , yz)− µ1(x , y)z = 0, (5)

x B d1(y)− d1(xy) + d1(x) C y = dAµ1(x , y)− λµ1(dA(x), dA(y)). (6)



Part III: A chain map

Define a chain map Φ∗ : C∗Alg(A,M)→ C∗DOλ
(A,M) as follows: for any

f ∈ C n
Alg(A,M) with n ≥ 1,

Φn(f )(a1,n)

=
n∑

k=1

λk−1
∑

1≤i1<···<ik≤n

f (a1,i1−1, dA(ai1), ai1+1,i2−1, dA(ai2), · · · , dA(aik ), aik+1,n)

− dM(f (a1,n)),

and
Φ0(x) = −dM(x), ∀ x ∈ C 0

Alg(A,M) = M.



Part III: Return to formal deformations

Consider the case n = 1,

xµ1(y , z)− µ1(xy , z) + µ1(x , yz)− µ1(x , y)z = 0⇐⇒ ∂2Algµ1 = 0,

x B d1(y)− d1(xy) + d1(x) C y = dAµ1(x , y)− λµ1(dA(x), dA(y))

⇐⇒ ∂2DOλ
d1 + Φ2µ1 = 0

Proposition
Case n = 1⇐⇒ ∂2DAλ

(µ1, d1) = 0.



Part III: Cohomology theory of differential algebras

Definition
The negative shift of the mapping cone of Φ∗, denoted by

(C∗DAλ
(A,M), ∂∗DAλ

)

is called the cochain complex of the differential algebra A with
coefficients in the differential bimodule M.

When the differential bimodule M is the regular differential bimodule A,
we write (C∗DAλ

(A), ∂∗DAλ
) := (C∗DAλ

(A,M), ∂∗DAλ
).



Part III: L∞-algebra structure on CDAλ(V )

Let V be a graded space. Define a graded space CDAλ(V ) as :

CDAλ(V ) = CAlg(V )⊕ CDOλ(V ),

where

CAlg(V ) = Hom(T c(sV ), sV ),CDOλ(V ) = Hom(T c(sV ),V ).

Theorem
Given a graded space V and an element λ ∈ k, there is an L∞-algebra
structure on graded space

CDAλ(V )

such that it becomes Gerstenhaber graded Lie algebra over CAlg(V ).



Part III: L∞-algebra structure on CDAλ(V )

Theorem
Let V be an ungraded vector space.

I The set of Maurer-Cartan elements in the L∞-algebra CDAλ(V ) is in
bijection with the differential algebra structure of weight λ on V .

I Given a Maurer-Cartan element α in CDAλ(V ), the underlying
complex of the twisted L∞-algebra by this Maurer-Cartan element is
just the cochain complex of the corresponding differential algebra.



Part III: Homotopy differential algebras

Definition
Let V be a graded space. A homotopy differential algebra structure of
weight λ on V is defined to be a Maurer-Cartan element in the
L∞-algebra CDAλ(V ).



Part III: Homotopy differential algebras

Definition
Let V be a graded space. Then a homotopy differential algebra structure
of weight λ on V consists of two families of operators {mn}n>1, {dn}n>1

with mn : V⊗n → V , |mn| = n − 2, dn : V⊗n → V , |dn| = n − 1 satisfying
the following two conditions:

(1) ∑
16i+j6n

(−1)i+jkmn−j+1 ◦
(
id⊗i⊗mj⊗id⊗n−i−j

)
= 0,

(2) ∑
i+j+k=n

(−1)i+jkdn−j+1(id
⊗i⊗mj⊗id⊗k )

=
∑

j1+···+jq+1+q=p,

11+···+lq+j1+···+jq+1=n

(−1)ηλq−1mp ◦ (id⊗j1⊗dl1⊗id⊗j2⊗ . . .⊗dlq⊗id⊗jq+1 ),



Part III: Homotopy differential algebras

(i) when n = 1, |d1| = 0 and

d1 ◦m1 = m1 ◦ d1,

that is, d1 : (V ,m1)→ (V ,m1) is a chain map;

(ii) when n = 2, |d2| = 1 and and

d1 ◦m2 −
(

m2 ◦ (d1⊗Id) + m2 ◦ (Id⊗d1) + λm2 ◦ (d1⊗d1)
)

= d2 ◦ (Id⊗m1 + m1⊗Id) + m1 ◦ d2,

which shows that d1 is, up to a homotopy given by d2, a differential
operator of weight λ with respect to the “multiplication” m2.



Part III: Minimal model

Theorem
The dg operad λDif∞ of homotopy differential algebras of weight λ is the
minimal model of the operad λDif of differential algebras of weight λ,
that is, there is a surjective quasi-isomorphism of operads
p : λDif∞ → λDif subject to a certain minimality condition.

Remark
One can introduce the Koszul dual λDif¡ such that Ω(λDif¡) = λDif∞,
but λDif¡ is only a homotopy cooperad.

J. Chen, L. Guo, K. Wang and G. Zhou, Koszul duality, minimal
model and L∞-structure for differential algebras with weight.
arXiv:2302.13216.



Part III: Minimal model

As a free graded operad, the dg operad λDif∞ is generated by

mn(n > 2)

1 i n

dn(n > 1)

1 i n



Part III: Minimal model
The differential is given by

∂
mn(n > 2)

1 i n

=
∑
± mn−j+1

1

i

n − j + 1

mj

1 j

∂
dn(n > 1)

1 i n

=± dn−j+1

i

mj

+
∑
±λq−1 mp

dl1 dli dlq

k1 ki kq



Part IV: (Relative) Rota-Baxter associative/Lie algebras

Definition
Let (R, µ = ·) be an associative algebra and λ ∈ k. A linear operator
T : R → R is said to be a Rota-Baxter operator of weight λ if it
satisfies

µ ◦ (T⊗T ) = T ◦ µ ◦ (Id⊗T ) + T ◦ µ ◦ (T⊗Id) + λT ◦ µ. (7)

Then (R, µ,T ) is called a Rota-Baxter algebra of weight λ.

Definition
A relative Rota-Baxter Lie algebra is a triple ((g, [−,−]g), ρ,T ), where
(g, [−,−]g) is a Lie algebra, ρ : g→ gl(V ) is a representation of g on a
vector space V and T : V → g is a relative Rota-Baxter operator, i.e.

[Tu,Tv ]g = T (ρ(Tu)(v)− ρ(Tv)(u)),∀u, v ∈ V



Part IV: (Relative) Rota-Baxter associative/Lie algebras
I Can define the deformation complex and construct the L∞-structure
I Can define homotopy version

R. Tang, C. Bai, L. Guo and Y. Sheng, Deformations and their
controlling cohomologies of O-operators. Comm. Math. Phys. 368
(2019), no. 2, 665-700.

A. Lazarev, Y. Sheng and R. Tang, Deformations and Homotopy
Theory of Relative Rota-Baxter Lie Algebras. Comm. Math. Phys.
383 (2021), no. 1, 595-631.

A. Lazarev, Y. Sheng and R. Tang, Homotopy relative Rota-Baxter
Lie algebras, triangular L∞-bialgebras and higher derived brackets.
Trans. Amer. Math. Soc. to appear.

K. Wang and G. Zhou, Deformations and homotopy theory of
Rota-Baxter algebras of any weight. arXiv:2108.06744.

K. Wang and G. Zhou, The homotopy theory and minimal model of
Rota-Baxter algebras of arbitrary weight. arXiv:2203.02960.

J, Chen, Z. Qi, K. Wang and G. Zhou, The homotopy theory,
minimal model and L∞-structure of (relative) Rota-Baxter Lie
algebras of arbitrary weight. in preparasion.



Part IV: (Relative) Rota-Baxter associative/Lie algebras

I Can prove the minimal model

K. Wang and G. Zhou, Deformations and homotopy theory of
Rota-Baxter algebras of any weight. arXiv:2108.06744.

K. Wang and G. Zhou, The homotopy theory and minimal model of
Rota-Baxter algebras of arbitrary weight. arXiv:2203.02960.

J, Chen, Z. Qi, K. Wang and G. Zhou, The homotopy theory,
minimal model and L∞-structure of (relative) Rota-Baxter Lie
algebras of arbitrary weight. in preparasion.



Part IV: Averaging algebras and embedding tensors

Definition
Let R be an associative algebra over field k. An averaging operator over
R is a k-linear map A : R → R such that

A(x)A(y) = A(A(x)y) = A(xA(y))

for all x , y ∈ R.

Definition
Let g be a Lie algebra over a field k and V a representation of g. A
k-linear map A : V → g is an embedding tensor if

[A(x),A(y)] = A(A(x)y)

for all x , y ∈ V .



Part IV: Averaging algebras and embedding tensors

I Deformation complex, and L∞-structure on deformation complex

K. Wang, G. Zhou, Cohomology theory of averaging algebras,
L∞-structures and homotopy averaging algebras, arXiv:2009.11618.

Y. Sheng, R. Tang and C. Zhu, The controling L∞-algebras,
cohomology and homotopy of embedding tensors and Lie-Leibniz
triples, Comm. Math. Phys. 386 (2021), no. 1, 269-304

I Minimal model?



Part IV: Nijenhuis algebras
Definition
Let (A, µ = ·) be an associative algebra over field k. A linear operator
P : A→ A is said to be a Nijenhuis operator if it satisfies

µ ◦ (P⊗P) = P ◦
(
µ ◦ (Id⊗P) + µ ◦ (P⊗Id)− P ◦ µ

)
. (8)

In this case, (A, µ,P) is called a Nijenhuis algebra.

Theorem

I Can define deformation complex of Nijenhuis algebras

I Can construct L∞-structure on the deformation complex and define
homotopy Nijenhuis algebras

I Can prove the minimal model

I Have some applications to Nijenhuis geometry

C. Song, K. Wang, Y. Zhang, G. Zhou, The homotopy theory of
Nijenhuis algebras with geometric applications, in preparasion.

A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, Nijenhuis geometry,
Adv. Math. 394, (2022), 108001



Thank you very much!


