Finitely accessible arboreal adjunctions and Hintikka formulae

Luca Reggio & Colin Riba

Department of Computer Science, UCL, UK
LIP, ENS de Lyon, France

LHC days 2024
A reformulation of an old example (1/2)

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae
A reformulation of an old example (1/2)

Situation

\[\langle \overline{x} \mid \varphi \rangle \]

where

- \(\overline{x} = x_1, \ldots, x_n \)
- \(\varphi \) finite conjunction of constraints

\[((x_i < x_j) \text{ or } (x_i = x_j)) \]

A reformulation of an old example (1/2)

Situation

\[\langle \overline{x} \mid \varphi \rangle \xrightarrow{m} (M, <_M) \]

where

- \(\overline{x} = x_1, \ldots, x_n \)
- \(\varphi \) finite conjunction of constraints \(((x_i < x_j) \text{ or } (x_i = x_j))\)
- \(m \) is an order embedding:

 \[
 m(x_i) <_M m(x_j) \iff (x_i < x_j) \text{ in } \varphi \\
 m(x_i) = m(x_j) \iff (x_i = x_j) \text{ in } \varphi
 \]

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae
A reformulation of an old example (2/2)

Let \((M, <_M)\) and \((N, <_N)\) be dense linear orders without end points.

(e.g. \((\mathbb{Q}, <)\) and \((\mathbb{R}, <))\)

A reformulation of an old example (2/2)

Let \((M, <_M)\) and \((N, <_N)\) be dense linear orders without end points.

(e.g. \((\mathbb{Q}, <)\) and \((\mathbb{R}, <)\))

Ehrenfeucht-Fraïssé game

(played by Spoiler and Duplicator)

\[
\langle \overline{X} \mid \varphi \rangle \quad \begin{array}{c} \leftarrow \end{array} \quad \begin{array}{c} \overline{X} \mid \varphi \rangle \quad \begin{array}{c} \rightarrow \end{array}
\end{array}
\]

A reformulation of an old example (2/2)

Let \((M, <_M)\) and \((N, <_N)\) be dense linear orders without end points.
(e.g. \((\mathbb{Q}, <)\) and \((\mathbb{R}, <)\))

Ehrenfeucht-Fraïssé game
(played by Spoiler and Duplicator)

A reformulation of an old example (2/2)

Let \((M, <_M)\) and \((N, <_N)\) be dense linear orders without end points.

(e.g. \((\mathbb{Q}, <)\) and \((\mathbb{R}, <)\))

Ehrenfeucht-Fraïssé game

(played by Spoiler and Duplicator)

A reformulation of an old example (2/2)

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points.
(e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Ehrenfeucht-Fraïssé game
(played by Spoiler and Duplicator)

\[\langle x \mid \varphi \rangle \quad \text{or symmetrically.} \]

A reformulation of an old example (2/2)

Let \((M, <_M)\) and \((N, <_N)\) be dense linear orders without end points. (e.g. \((\mathbb{Q}, <)\) and \((\mathbb{R}, <))\)

Ehrenfeucht-Fraïssé game (played by Spoiler and Duplicator)

\[
\langle x \mid \varphi \rangle \quad \langle x, x' \mid \varphi \land \varphi' \rangle
\]

or symmetrically.

▶ Duplicator wins since they can always respond.

A reformulation of an old example (2/2)

Let \((M, <_M)\) and \((N, <_N)\) be dense linear orders without end points.

(e.g. \((\mathbb{Q}, <)\) and \((\mathbb{R}, <))\)

Ehrenfeucht-Fraïssé game

(played by Spoiler and Duplicator)

\[
\langle \overline{X} \mid \varphi \rangle \\
\langle \overline{X}, x' \mid \varphi \land \varphi' \rangle
\]

\(M\) \[\text{(Spoiler)}\] \[\langle \overline{X}, x' \mid \varphi \land \varphi' \rangle \[\text{(Duplicator)}\] \(N\)

- Duplicator wins since they can always respond.

Corollary (\ldots, Karp (1965))

\((M, <_M)\) and \((N, <_N)\) are equivalent in \(\mathcal{L}_\infty(<)\).

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae 3/13
Toward game comonads
Toward game comonads: turn plays into structures
Toward game comonads: turn plays into structures

Ehrenfeucht-Fraïssé games

Play

\[M \rightarrow N \]

\[\langle \rangle \]

\[\langle x_1 \mid \varphi_1 \rangle \]

\[\langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \]

\[\langle x_1, \ldots, x_n \mid \varphi_1 \land \cdots \land \varphi_n \rangle \]

Toward game comonads: turn plays into structures

Ehrenfeucht-Fraïssé games

- Play projected on M

\[
\langle \rangle \\
\Downarrow \\
\langle x_1 \mid \varphi_1 \rangle \\
\Downarrow \\
\langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \\
\Downarrow \\
\langle x_1, \ldots, x_n \mid \varphi_1 \land \cdots \land \varphi_n \rangle
\]

M is an element of a structure $\text{REF}(M)$ with carrier M^+.

Toward game comonads: turn plays into structures

Ehrenfeucht-Fraïssé games

► Play projected on M

\[
\begin{align*}
\langle \rangle \\
\downarrow \\
\langle x_1 \mid \varphi_1 \rangle \\
\downarrow \\
\langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \\
\downarrow \\
\langle x_1, \ldots, x_n \mid \varphi_1 \land \cdots \land \varphi_n \rangle
\end{align*}
\]

is an element of a structure $R_{\text{EF}}(M)$ with carrier M^+.

Game comonads: turn plays into structures

Ehrenfeucht-Fraïssé games

- Play projected on M is an element of a structure $R_{\text{EF}}(M)$ with carrier M^+.

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae
Game comonads: turn plays into structures

Ehrenfeucht-Fraïssé games

- Play projected on M is an element of a structure $R_{EF}(M)$ with carrier M^+.

Other examples

- Pebble games.
- Modal fragment, Hybrid fragment, Guarded fragments, . . .

Game comonads: turn plays into structures

Ehrenfeucht-Fraïssé games

- Play projected on M is an element of a structure $R_{\text{EF}}(M)$ with carrier M^+.

Other examples

- Pebble games.
- Modal fragment, Hybrid fragment, Guarded fragments, …

Adjunctions

- The $R(M)$ are structures with a forest order.

\[
\begin{array}{c}
\text{A} \\
\downarrow \\
\text{Struct}(\sigma)
\end{array}
\]

\[
R
\]

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae
Game comonads: turn plays into structures

Ehrenfeucht-Fraïssé games
- Play projected on M is an element of a structure $R_{\text{EF}}(M)$ with carrier M^+.

Other examples
- Pebble games.
- Modal fragment, Hybrid fragment, Guarded fragments, . . .

Adjunctions
- The $R(M)$ are structures with a forest order.
- In each case, R is a right adjoint.
- Comonads on $\text{Struct}(\sigma)$.

Arboreal categories

Abramsky & Reggio (2021, 2023).

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae
Arboreal categories: motivations

\[\mathcal{A} \xrightarrow{L} \text{Struct}(\sigma) \xleftarrow{R} \]

Abramsky & Reggio (2021, 2023).
Arboreal categories: motivations

\[\mathcal{A} \quad \Downarrow \quad \text{Struct}(\sigma) \quad \Downarrow \quad \mathcal{A} \]

Conditions on \(\mathcal{A} \) which yield well-behaved games.

Abramsky & Reggio (2021, 2023).
Arboreal categories and model comparison games

Arboreal categories: main ideas

Arboreal category \mathcal{A}.
Arboreal categories: main ideas

Arboreal category \(A \).

- Factorization system \((\mathcal{Q}, \mathcal{M})\) on \(A \):
 each morphism \(f \) factors as \((e \in \mathcal{Q}, m \in \mathcal{M})\)
 \[
 \begin{array}{ccc}
 \bullet & \xrightarrow{f} & \bullet \\
 \downarrow^{e} & & \downarrow^{m} \\
 \bullet & & \bullet
 \end{array}
 \]

- Typically, the "embeddings" \(m \in \mathcal{M} \) are embeddings of structures which are forest morphisms.

- \(P \in A \) is a path when its \(\mathcal{M} \)-subobjects form a finite chain \(S_1 S_2 \cdots S_n P \).

Induced functor \(A \to \text{Tree} \).

Abramsky & Reggio (2021, 2023).
Arboreal categories and model comparison games

Arboreal categories: main ideas

Arboreal category \(\mathcal{A} \).

- Factorization system \((\mathcal{Q}, \mathcal{M})\) on \(\mathcal{A} \):
 each morphism \(f \) factors as \((e \in \mathcal{Q}, m \in \mathcal{M}) \)

\[
\bullet \xrightarrow{\; e \;} \bullet \xrightarrow{\; f \;} \bullet \xrightarrow{\; m \;} \bullet
\]

- Typically, the “embeddings” \(m \in \mathcal{M} \) are embeddings of structures which are forest morphisms.
Arboreal categories: main ideas

Arboreal category \mathcal{A}.

▶ Factorization system $(\mathcal{Q}, \mathcal{M})$ on \mathcal{A}: each morphism f factors as

$$f = e \downarrow \cdot \dashv m \quad (e \in \mathcal{Q}, \ m \in \mathcal{M})$$

▶ Typically, the “embeddings” $m \in \mathcal{M}$ are embeddings of structures which are forest morphisms.

▶ $P \in \mathcal{A}$ is a path when its \mathcal{M}-subobjects form a finite chain

$$S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_n \leftarrow P$$

Abramsky & Reggio (2021, 2023).

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae
Arboreal categories: main ideas

Arboreal category \mathcal{A}.

- Factorization system $(\mathcal{Q}, \mathcal{M})$ on \mathcal{A}:

 Each morphism f factors as $f = (e \in \mathcal{Q}, m \in \mathcal{M})$.

- Typically, the “embeddings” $m \in \mathcal{M}$ are embeddings of structures which are forest morphisms.

- $P \in \mathcal{A}$ is a path when its \mathcal{M}-subobjects form a finite chain $S_1 \cong S_2 \cong \cdots \cong S_n \cong P$.

- Induced functor $\mathcal{A} \rightarrow \text{Tree}$.

Abramsky & Reggio (2021, 2023).

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae 7/13
Arboreal categories: back-and-forth equivalence

Back-and-forth game $\mathcal{G}(X, Y)$.

$\mathcal{G}(X, Y)$ is a back-and-forth game played by Spoiler and Duplicator.

Definition: $X, Y \in \mathcal{A}$ are back-and-forth equivalent if Duplicator wins $\mathcal{G}(X, Y)$.

Bisimulation via open maps. (Joyal, Nielsen, Winskel)
Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$.
- Positions are spans of “embeddings”

\[X \xrightarrow{P} Y \]

\[(X, Y \in \mathcal{A}) \]

\[(P \text{ path}) \]

Abramsky & Reggio (2021, 2023).

Reggio & Riba (LIP, ENS de Lyon)
Finitely accessible arboreal adjunctions and Hintikka formulae
Arboreal categories and model comparison games

Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$.

- Positions are spans of “embeddings”
- Moves: (played by Spoiler and Duplicator)

$X \xleftarrow{P} \xrightarrow{P} Y$

$(X, Y \in \mathcal{A})$

$(P \text{ path})$

Definition: $X, Y \in \mathcal{A}$ are back-and-forth equivalent if Duplicator wins $G(X, Y)$.

Bisimulation via open maps. (Joyal, Nielsen, Winskel)

Abramsky & Reggio (2021, 2023).

Reggio & Riba (LIP, ENS de Lyon)

Finitely accessible arboreal adjunctions and Hintikka formulae
Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$. ($X, Y \in A$)

- Positions are spans of “embeddings” (P path)
- Moves: (played by Spoiler and Duplicator)

\[
\begin{tikzpicture}
 \node (X) at (0, 0) {X};
 \node (Q) at (1, 0) {Q};
 \node (Y) at (2, 0) {Y};
 \node (P) at (1, -1) {P};

 \draw[->] (X) -- (Q) node[midway, below] (TextNode) {P};
 \draw[->] (Q) -- (Y) node[midway, below] (TextNode) {Q};
 \draw[->] (X) -- (P) node[midway, above] (TextNode) {X};
 \draw[->] (Y) -- (P) node[midway, above] (TextNode) {Y};

 \draw[->] (X) edge[loop below] node {P} (X);
 \draw[->] (Y) edge[loop below] node {Q} (Y);
 \draw[->] (P) edge[loop below] node {X} (P);
\end{tikzpicture}
\]

Definition $X, Y \in A$ are back-and-forth equivalent if Duplicator wins $G(X, Y)$.

- Bisimulation via open maps. (Joyal, Nielsen, Winskel)

Abramsky & Reggio (2021, 2023).

Reggio & Riba (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae
Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$. ($X, Y \in \mathcal{A}$)

- Positions are spans of “embeddings” (P path)
- Moves: (played by Spoiler and Duplicator)

![Diagram]

Position P moves from X to Q and Y.

Definition $X, Y \in \mathcal{A}$ are back-and-forth equivalent if Duplicator wins $G(X, Y)$.

Bisimulation via open maps. (Joyal, Nielsen, Winskel)

Abramsky & Reggio (2021, 2023).
Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$.

- Positions are spans of “embeddings”
- Moves: (played by Spoiler and Duplicator)

\[
\begin{array}{c}
X \\
\mathop{\downarrow} \mathop{\leftarrow} \mathop{\downarrow} \\
Q & P & Y \\
\mathop{\leftarrow} \mathop{\uparrow} \mathop{\leftarrow} \\
(Spoiler) & & (Duplicator)
\end{array}
\]

or symmetrically.

Definition $X, Y \in \mathcal{A}$ are back-and-forth equivalent if Duplicator wins $G(X, Y)$.

Bisimulation via open maps. (Joyal, Nielsen, Winskel)

Abramsky & Reggio (2021, 2023).
Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$. (X, Y ∈ A)

- Positions are spans of “embeddings” (P path)
- Moves: (played by Spoiler and Duplicator)

$\xymatrix{ X \ar@<1ex>[r]^-{P} \ar@<1ex>[l]_-{(Spoiler)} & Q \ar@<1ex>[l]^-{(Duplicator)} \\ Y \ar@<1ex>[u] \ar@<1ex>[r] & }$

- Duplicator wins if they can always respond.
Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$. ($X, Y \in A$)

- Positions are spans of “embeddings” (P path)
- Moves: (played by Spoiler and Duplicator)

$\begin{array}{cc}
X & P \\
\text{(Spoiler)} & \downarrow \\
Q & \text{(Duplicator)} \\
\end{array}$

or symmetrically.

- Duplicator wins if they can always respond.

Definition

$X, Y \in A$ are back-and-forth equivalent if Duplicator wins $G(X, Y)$.
Arboreal categories and model comparison games

Arboreal categories: back-and-forth equivalence

Back-and-forth game $G(X, Y)$.

- Positions are spans of “embeddings”
- Moves:

· Duplicator wins if they can always respond.

Definition

$X, Y \in A$ are **back-and-forth equivalent** if Duplicator wins $G(X, Y)$.

- Bisimulation via open maps.

(Abramsky & Reggio (2021, 2023).

Reggio & Riba (LIP, ENS de Lyon)
Finitely accessible arboreal adjunctions and Hintikka formulae

Our goal

\[
\begin{tikzcd}
\mathcal{A} & \mathcal{E} \\
& \downarrow
\end{tikzcd}
\]

\[L \quad \perp \quad R \]

Example (Ehrenfeucht-Fraïssé games)

Arboreal A with right adjoint R

\[
\text{Struct}(\sigma) \rightarrow A
\]

such that

\[M, N \text{ are } L_{\infty}(\sigma)\text{-equivalent} \iff R_{EF}(M), R_{EF}(N) \text{ are back-and-forth equivalent} \]

Goal

Give sufficient conditions on L: A \rightleftarrows E: R so that

\[M, N \in E \text{ are } L_{\infty}\text{-equivalent} \Rightarrow R(M), R(N) \in A \text{ are back-and-forth equivalent} \]
Our goal

\[\mathcal{A} \sqcup \downarrow \sqcap \sqcup \mathcal{E} \]

Example (Ehrenfeucht-Fraïssé games)

Arboreal \(\mathcal{A} \) with right adjoint \(R_{EF} : \text{Struct}(\sigma) \to \mathcal{A} \) such that

\(M, N \) are \(\mathcal{L}_\infty(\sigma) \)-equivalent \iff

\(R_{EF}(M), R_{EF}(N) \) are back-and-forth equivalent
Our goal

\[\mathcal{A} \quad \bot \quad \mathcal{E} \]

Example (Ehrenfeucht-Fraïssé games)

Arboreal \(\mathcal{A} \) with right adjoint \(\text{R}_{\text{EF}} : \text{Struct}(\sigma) \to \mathcal{A} \) such that

\[M, N \text{ are } \mathcal{L}_\infty(\sigma) \text{-equivalent} \iff \text{R}_{\text{EF}}(M), \text{R}_{\text{EF}}(N) \text{ are back-and-forth equivalent} \]

Goal

Give sufficient conditions on \(L : \mathcal{A} \leftrightarrow \mathcal{E} : \text{R} \) so that

\[M, N \in \mathcal{E} \text{ are } \mathcal{L}_\infty \text{-equivalent} \implies \text{R}(M), \text{R}(N) \in \mathcal{A} \text{ are back-and-forth equivalent} \]
A “structure theorem” for arboreal adjunctions

\[
\begin{array}{c}
\mathcal{A} \\
\bot \\
\mathcal{E}
\end{array}
\]

\[
\begin{array}{c}
L \\
R
\end{array}
\]
A “structure theorem” for arboreal adjunctions

In many examples:
- \(\mathcal{A} \) and \(\mathcal{E} \) are locally finitely presentable,
- the right \(R: \mathcal{E} \to \mathcal{A} \) adjoint is finitary,
A “structure theorem” for arboreal adjunctions

In many examples:

- \mathcal{A} and \mathcal{E} are locally finitely presentable,
- the right $R : \mathcal{E} \to \mathcal{A}$ adjoint is finitary,
- the paths P of \mathcal{A} are finitely presentable,
A “structure theorem” for arboreal adjunctions

In many examples:
- \(\mathcal{A} \) and \(\mathcal{E} \) are locally finitely presentable,
- the right \(R: \mathcal{E} \to \mathcal{A} \) adjoint is finitary,
- the paths \(P \) of \(\mathcal{A} \) are finitely presentable,
- given \(f: P \to X \) in \(\mathcal{A} \),

\[f \text{ "embedding" in } \mathcal{A} \iff L(f) \text{ embedding of structures in } \mathcal{E} \]
A “structure theorem” for arboreal adjunctions

\[
\begin{array}{c}
\mathcal{A} \\
\perp \\
\mathcal{E}
\end{array}
\xymatrix{
\mathcal{A} \ar@/^/[rr]^{L} \\
\perp \\
\mathcal{E} \ar@/_/[rr]_{R}
}
\]

In many examples:

- \(\mathcal{A} \) and \(\mathcal{E} \) are locally finitely presentable,
- the right \(R: \mathcal{E} \to \mathcal{A} \) adjoint is finitary,
- the paths \(P \) of \(\mathcal{A} \) are finitely presentable,
- given \(f: P \to X \) in \(\mathcal{A} \),

\[
f \text{“embedding” in } \mathcal{A} \iff L(f) \text{ embedding of structures in } \mathcal{E}
\]

Theorem (Reggio & Riba)

\[M, N \in \mathcal{E} \text{ are } L_\infty(\mathcal{E})\text{-equivalent} \implies R(M), R(N) \in \mathcal{A} \text{ are back-and-forth equivalent} \]
Proof

\[\mathcal{A} \xrightarrow{\perp} \xleftarrow{R} \mathcal{E} \]

- \(\mathcal{E} \) and \(\mathcal{A} \) locally finitely presentable,
- finitary right-adjoint \(R: \mathcal{E} \to \mathcal{A} \),
- paths \(P \) of \(\mathcal{A} \) finitely presentable.

\(f: P \to X \) “embedding” in \(\mathcal{A} \) \iff \(L(f) \) embedding of structures in \(\mathcal{E} \).
Proof

\[\mathcal{A} \rightleftharpoons_{\perp}^{L} \mathcal{E} \rightleftharpoons_{R}^{\mathcal{A}} \]

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of \mathcal{A} finitely presentable.

- $f: P \to X$ “embedding” in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}.
- \mathcal{A} and \mathcal{E} categories of models of (cartesian) theories. (Coste 1976)
Proof

- \mathcal{A} and \mathcal{E} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of \mathcal{A} finitely presentable.

- $f: P \to X$ “embedding” in \mathcal{A} \iff $L(f)$ embedding of structures in \mathcal{E}.
- \mathcal{A} and \mathcal{E} categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $\mathcal{L}_\infty(\mathcal{E})$.
 (functorial semantics and Yoneda lemma)
Proof

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of \mathcal{A} finitely presentable.

- $f: P \to X$ “embedding” in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}.
- \mathcal{A} and \mathcal{E} categories of models of (cartesian) theories.
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $L_\infty(\mathcal{E})$.
 (functorial semantics and Yoneda lemma)
- Left adjoint $L: \mathcal{A} \to \mathcal{E}$ induces a formula translation $L_\infty(\mathcal{E}) \to L_\infty(\mathcal{A})$.
 (Hodges’ word-constructions (1974, 1975))
Proof

- \(\mathcal{E} \) and \(\mathcal{A} \) locally finitely presentable,
- finitary right-adjoint \(R: \mathcal{E} \to \mathcal{A} \),
- paths \(P \) of \(\mathcal{A} \) finitely presentable.

\[\begin{array}{c}
\mathcal{A} \\
\downarrow L \\
\mathcal{E} \\
\mathcal{E} \\
\uparrow R \\
\mathcal{A}
\end{array} \]

- \(f: P \to X \) “embedding” in \(\mathcal{A} \) \(\iff \) \(L(f) \) embedding of structures in \(\mathcal{E} \).
- \(\mathcal{A} \) and \(\mathcal{E} \) categories of models of (cartesian) theories. \(\text{(Coste 1976)} \)
- Embeddings of structures in \(\mathcal{E} \) (of f.p. domain) are definable in \(\mathcal{L}_\infty(\mathcal{E}) \).
 \(\text{(functorial semantics and Yoneda lemma)} \)
- Left adjoint \(L: \mathcal{A} \to \mathcal{E} \) induces a formula translation \(\mathcal{L}_\infty(\mathcal{E}) \to \mathcal{L}_\infty(\mathcal{A}) \).
 \(\text{(Hodges’ word-constructions (1974, 1975))} \)
- Hintikka formulae in \(\mathcal{L}_\infty(\mathcal{A}) \) for back-and-forth games in \(\mathcal{A} \).
 \(\text{(define ordinal ranks of positions in games)} \)
Proof

\[\mathcal{A} \leftrightarrow \Downarrow L \leftrightarrow R \rightarrow \mathcal{E} \]

- \(\mathcal{E} \) and \(\mathcal{A} \) locally finitely presentable,
- finitary right-adjoint \(R : \mathcal{E} \rightarrow \mathcal{A} \),
- paths \(P \) of \(\mathcal{A} \) finitely presentable.

- \(f : P \rightarrow X \) “embedding” in \(\mathcal{A} \) \(\iff \) \(L(f) \) embedding of structures in \(\mathcal{E} \).
- \(\mathcal{A} \) and \(\mathcal{E} \) categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \(\mathcal{E} \) (of f.p. domain) are definable in \(\mathcal{L}_\infty(\mathcal{E}) \).
 (functorial semantics and Yoneda lemma)
- Left adjoint \(L : \mathcal{A} \rightarrow \mathcal{E} \) induces a formula translation \(\mathcal{L}_\infty(\mathcal{E}) \rightarrow \mathcal{L}_\infty(\mathcal{A}) \).
 (Hodges’ word-constructions (1974, 1975))
- Hintikka formulae in \(\mathcal{L}_\infty(\mathcal{A}) \) for back-and-forth games in \(\mathcal{A} \).
 (define ordinal ranks of positions in games)

Lemma

If \(X, Y \) are equivalent in \(\mathcal{L}_\infty(\mathcal{A}) \), then \(X, Y \) are back-and-forth equivalent in \(\mathcal{A} \).
Proof

$\mathcal{A} \quad \perp \quad \mathcal{E}$

- \mathcal{E} and \mathcal{A} locally finitely presentable,
- finitary right-adjoint $R: \mathcal{E} \to \mathcal{A}$,
- paths P of \mathcal{A} finitely presentable.

- $f: P \to X$ “embedding” in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}.
- \mathcal{A} and \mathcal{E} categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \mathcal{E} (of f.p. domain) are definable in $L_\infty(\mathcal{E})$.
 (functorial semantics and Yoneda lemma)
- Left adjoint $L: \mathcal{A} \to \mathcal{E}$ induces a formula translation $L_\infty(\mathcal{E}) \to L_\infty(\mathcal{A})$.
 (Hodges’ word-constructions (1974, 1975))
- Hintikka formulae in $L_\infty(\mathcal{A})$ for back-and-forth games in \mathcal{A}.
 (define ordinal ranks of positions in games)

Lemma

If X, Y are equivalent in $L_\infty(\mathcal{A})$, then X, Y are back-and-forth equivalent in \mathcal{A}.

- $R: \mathcal{E} \to \mathcal{A}$ induces a formula translation $L_\infty(\mathcal{A}) \to L_\infty(\mathcal{E})$.
Proof

- \(\mathcal{E} \) and \(\mathcal{A} \) locally finitely presentable,
- finitary right-adjoint \(R : \mathcal{E} \to \mathcal{A} \),
- paths \(P \) of \(\mathcal{A} \) finitely presentable.
- \(f : P \to X \) “embedding” in \(\mathcal{A} \) \(\iff \) \(L(f) \) embedding of structures in \(\mathcal{E} \).
- \(\mathcal{A} \) and \(\mathcal{E} \) categories of models of (cartesian) theories. (Coste 1976)
- Embeddings of structures in \(\mathcal{E} \) (of f.p. domain) are definable in \(\mathcal{L}_\infty(\mathcal{E}) \).
 (functorial semantics and Yoneda lemma)
- Left adjoint \(L : \mathcal{A} \to \mathcal{E} \) induces a formula translation \(\mathcal{L}_\infty(\mathcal{E}) \to \mathcal{L}_\infty(\mathcal{A}) \).
 (Hodges’ word-constructions (1974, 1975))
- Hintikka formulae in \(\mathcal{L}_\infty(\mathcal{A}) \) for back-and-forth games in \(\mathcal{A} \).
 (define ordinal ranks of positions in games)

Lemma

If \(X, Y \) are equivalent in \(\mathcal{L}_\infty(\mathcal{A}) \), then \(X, Y \) are back-and-forth equivalent in \(\mathcal{A} \).

- \(R : \mathcal{E} \to \mathcal{A} \) induces a formula translation \(\mathcal{L}_\infty(\mathcal{A}) \to \mathcal{L}_\infty(\mathcal{E}) \).

Theorem

If \(M, N \) are equivalent in \(\mathcal{L}_\infty(\mathcal{E}) \), then \(R(M), R(N) \) are back-and-forth equivalent in \(\mathcal{A} \).
An application

\[\mathcal{A} \xrightarrow{L} \text{Struct}(\sigma) \xleftarrow{R} \]

Theorem

\[M, N \in \text{Struct}(\sigma) \text{ are } \mathcal{L}_\infty(\sigma)-equivalent \quad \implies \quad R(M), R(N) \in \mathcal{A} \text{ are back-and-forth equivalent} \]
An application

\[\mathcal{A} \xrightarrow{L} \text{Struct}(\sigma) \xleftarrow{R} \]

Theorem

\[M, N \in \text{Struct}(\sigma) \text{ are } \mathcal{L}_\infty(\sigma)\text{-equivalent} \implies R(M), R(N) \in \mathcal{A} \text{ are back-and-forth equivalent} \]

Example.

- \((\mathbb{Q}, <)\) and \((\mathbb{R}, <)\) are \(\mathcal{L}_\infty(<)\)-equivalent.
- \(R(\mathbb{Q}), R(\mathbb{R})\) are back-and-forth equivalent in \(\mathcal{A}\).

Remark.

- Many non-isomorphic \(\mathcal{L}_\infty(<)\)-equivalent structures.
An application

$\mathcal{A} \quad \perp \quad \text{Struct}(\sigma)$

$M, N \in \text{Struct}(\sigma)$ are $\mathcal{L}_\infty(\sigma)$-equivalent \implies $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

Example.

- $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ are $\mathcal{L}_\infty(\sigma)$-equivalent.
- $R(\mathbb{Q}), R(\mathbb{R})$ are back-and-forth equivalent in \mathcal{A}.

Remark.

- Many non-isomorphic $\mathcal{L}_\infty(\sigma)$-equivalent structures.

Game comonad for MSO. (Jackl, Marsden & Shah, 2022)

- $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ are not MSO(σ)-equivalent.
Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

- General conditions on $R : \mathcal{E} \to \mathcal{A}$ for

 $M, N \in \mathcal{E}$ are $\mathcal{L}_\infty(\mathcal{E})$-equivalent \implies $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

- Restricts to finite games and finitary logic.
- Covers various examples.

Future work.
- Higher presentability ranks.
 (Lindström quantifiers (via the games of (Caicedo 1980)))
 (Comonadic modal logic)
- Convey stronger invariants?
 (E.g. finite variable constraint for pebble games)

Thanks for your attention!
Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

- General conditions on $R : \mathcal{E} \to \mathcal{A}$ for $M, N \in \mathcal{E}$ are $\mathcal{L}_\infty(\mathcal{E})$-equivalent $\implies R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

- Restricts to finite games and finitary logic.
- Covers various examples.
Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

- General conditions on $R: \mathcal{E} \to \mathcal{A}$ for
 $M, N \in \mathcal{E}$ are $L_\infty(\mathcal{E})$-equivalent \implies
 $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

- Restricts to finite games and finitary logic.
- Covers various examples.

Future work.

- Higher presentability ranks.
 (Lindström quantifiers (via the games of (Caicedo 1980)))
 (Comonadic modal logic)

- Convey stronger invariants?
 (E.g. finite variable constraint for pebble games)
Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

- General conditions on $R : \mathcal{E} \to \mathcal{A}$ for $M, N \in \mathcal{E}$ are $\mathcal{L}_\infty(\mathcal{E})$-equivalent \implies $R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent.

- Restricts to finite games and finitary logic.
- Covers various examples.

Future work.
- Higher presentability ranks.
 (Lindström quantifiers (via the games of (Caicedo 1980)))
 (Comonadic modal logic)
- Convey stronger invariants?
 (E.g. finite variable constraint for pebble games)

Thanks for your attention!